
Efficient Implementation of Rijndael Encryption
in Reconfigurable Hardware:

Improvements and Design Tradeoffs

Francois-Xavier Standaert, Gael Rouvroy,
Jean-Jacques Quisquater, Jean-Didier Legat

UCL Crypto Group
Laboratoire de Microelectronique
Universite Catholique de Louvain

Place du Levant, 3, B-1348 Louvain-La-Neuve, Belgium
standaert,rouvroy,quisquater,legat@dice.ucl.ac.be

Abstract. Performance evaluation of the Advanced Encryption Stan-
dard candidates has led to intensive study of both hardware and software
implementations. However, although plentiful papers present various im-
plementation results, it seems that efficiency could still be greatly im-
proved by applying good design rules adapted to devices and algorithms.
This paper addresses various approaches for efficient FPGA implementa-
tions of the Advanced Encryption Standard algorithm. As different appli-
cations of the AES algorithm may require different speed/area tradeoffs,
we propose a rigorous study of the possible implementation schemes, but
also discuss design methodology and algorithmic optimization in order
to improve previously reported results. We propose heuristics to evalu-
ate hardware efficiency at different steps of the design process. We also
define an optimal pipeline that takes the place and route constraints into
account. Resulting circuits significantly improve previously reported re-
sults: throughput is up to 18.5 Gbits/sec and area requirements can be
limited to 542 slices and 10 RAM blocks with a ratio throughput/area
improved by at least 25% of the best-known designs in the Xilinx Virtex-
E technology.

1 Introduction

In October 2000, NIST (National Institute of Standards and Technology) se-
lected Rijndael [2] as the new Advanced Encryption Standard. The selection pro-
cess included performance evaluation on both software and hardware platforms.
Many hardware architectures were proposed [3 − 16], but most of them were
simple implementations according to the Rijndael specification. More recently,
design strategies and implementation approaches were proposed for the imple-
mentation of block ciphers in reconfigurable hardware [17, 18] while other papers
focused on some interesting algorithmic optimizations, specially for the highly
expensive substitution box of Rijndael [19–21]. This paper addresses various
approaches for FPGA implementations of the Advanced Encryption Standard
algorithm and combines recent observations about Rijndael in efficient designs.
As different applications of the AES algorithm may require different speed/area

tradeoffs, we propose a rigorous study of the possible implementation schemes,
but also discuss design methodology and algorithmic optimization in order to
improve previously reported results. We first discuss the implementation of the
substitution box and linear diffusion layer at the algorithmic level. Then we
examine different possible architectures and optimizations. Finally, we present
heuristics allowing to evaluate the efficiency of our architectures at different steps
of the design process. Synthesis and implementation constraints of FPGAs are
taken into account in order to define maximum and optimal pipeline. We apply
these notions to loop and unrolled architecture in order to improve circuits per-
formances and compare our results to the best designs reported in literature. The
main contribution of this paper has to be found in the improvement of hardware
efficiency that we define as the ratio throuhput/area: efficiency of best-known
unrolled architectures is improved by 35% while efficiency of best-known loop
architectures is improved by at least 25% in the Xilinx Virtex-E technology.

This paper is structured as follows. The description of the hardware, synthesis
tool and implementation tool is in section 2. Section 3 gives a short mathemati-
cal description of Rijndael and we propose an efficient representation of the key
schedule by means of a key round. The main contribution of this paper lies in
section 4 where we discuss the possible implementation tradeoffs. Section 4.1
deals with design methodology and defines hardware efficiency and maximum
pipeline for FPGAs. Section 4.2 presents possible algorithmic optimization of
Rijndael. Different schemes for the substitution box are proposed and the dif-
fusion layer is combined with the key addition. Section 4.3 proposes different
architectures for various speed/area tradeoffs: loop architectures and unrolled
architectures are studied and implemented. Finally, section 4.4 defines optimal
pipeline for FPGAs as well as a heuristic rule to reach it. Practical results and
comparisons with best known published designs are in section 5 and conclusions
are in section 6.

2 Hardware description

All our implementations were carried out on a XILINX VIRTEX3200ECG1156-
8 FPGA. We chose this technology in order to allow relevant comparisons with
the best-known FPGA implementations of Rijndael. In this section, we briefly
describe the structure of a VIRTEX FPGA as well as the synthesis and imple-
mentation tools that were used to obtain our results.
Configurable Logic Blocks (CLB’s): The basic building block of the VIR-
TEX logic block is the logic cell (LC). An LC includes a 4-input function genera-
tor, carry logic and a storage element. The output from the function generator in
each LC drives both the CLB output and the D input of the flip-flop. Each VIR-
TEX CLB contains four LC’s, organized in two similar slices. Figure 1, shows
a detailed view of a single slice. Virtex function generators are implemented
as 4-input look-up tables (LUTs). In addition to operate as a function gener-
ator, each LUT can provide a 16×1-bit synchronous RAM. Furthermore, the
two LUTs within a slice can be combined to create a 16×2-bit or 32×1-bit syn-
chronous RAM or a 16×1-bit dual port synchronous RAM. The VIRTEX LUT

Fig. 1. The VIRTEX slice.

can also provide a 16-bit shift register.
The storage elements in the VIRTEX slice can be configured either as edge-
triggered D-type flip-flops or as level-sensitive latches. The D inputs can be
driven either by the function generators within the slice or directly from slice
inputs, bypassing function generators.
The F5 multiplexer in each slice combines the function generator outputs. This
combination provides either a function generator that can implement any 5-input
function, a 4:1 multiplexer, or selected functions of up to nine bits. Similarly, the
F6 multiplexer combines the outputs of all four function generators in the CLB
by selecting one of the F5-multiplexer outputs. This permits the implementation
of any 6-input function, an 8:1 multiplexer, or selected functions up to 19 bits.
The arithmetic logic also includes a XOR gate that allows a 1-bit full adder to
be implemented within an LC. In addition, a dedicated AND gate improves the
efficiency of multiplier implementations.
Finally, VIRTEX FPGAs incorporate several large RAM blocks. These comple-
ment the distributed LUT implementations of RAM’s. Every block is a fully
synchronous dual-ported 4096-bit RAM with independent control signals for
each port. The data widths of the two ports can be configured independently.
Our hardware: A VIRTEX3200ECG1156-8 FPGA contains 32448 slices and
208 RAM blocks, which means 64896 LUTs and 64896 flip-flops. In the next
sections, we compare the number of LUTs, registers and slices. We also evalu-
ate the delays and frequencies thanks to our synthesis tool. The synthesis was
performed with FPGA Compiler 2 3.7.1 (SYNOPSYS) and the implementation
with XILINX ISE-5. Finally, our circuit models were described using VHDL.

3 Block cipher description

Rijndael is an iterated block cipher that operates on a 128-bit cipher state and
uses a 128-bit key1. It consists of a serie of 10 applications of a key-dependent
round transformation to the cipher state. In the following, we will individually
define the component mappings and constants that build up Rijndael, then spec-
ify the complete cipher in terms of these components.
Representation: The state and key are represented as a square array of 16
bytes. This array has 4 rows and 4 columns. It can also be seen as a vector in
GF (28)16. Let s be a cipher state or a key ∈ GF (28)16, then si is the i-th byte
of the state s and si(j) is the j-th bit of this byte.
SubBytes, the non-linear layer γ: The SubBytes transformation is a non-
linear byte substitution, operating on each byte independently. The substitution
table (or s-box) is invertible and is constructed by the composition of two oper-
ations:

1. The multiplicative inverse in GF (28).
2. An affine transform over GF (2).

Every byte is therefore considered as a polynomial with coefficients in GF (2):

b(x) = b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x
1 + b0x

0

b7b6b5b4b3b2b1b0 → b(x) (1)

Then SubBytes consists of the parallel application of this s-box S:

γ(a) = b ⇔ bi = S[ai], 0 ≤ i ≤ 15 (2)

The ShiftRows transformation δ: In ShiftRows, the rows of the state are
cyclically shifted over different offsets. Row 0 is not shifted, row 1 is shifted over
1 byte, row 2 over 2 bytes and row 3 over 3 bytes.
The MixColumns transformation θ: In MixColumns, the columns of the
state are considered as polynomials over GF (28) and multiplied modulo x4 + 1
with a fixed polynomial c(x), given by:

c(x) =′ 03′x3 +′ 01′x2 +′ 01′x +′ 02′ (3)

The polynomial is coprime to x4 + 1 and therefore is invertible. This can be
written as a matrix multiplication:




b0

b1

b2

b3


 =




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


×




a0

a1

a2

a3




1 Actually, there exist several versions of Rijndael with different block and key lengths,
but we focus on this one.

Where (b3, b2, b1, b0) is a four-byte column of the state. An output byte of Mix-
Columns (for example b0) can be expressed as:

b0 =′ 02′ × a0 ⊕′ 03′ × a1 ⊕′ 01′ × a2 ⊕′ 01′ × a3

We also define a function X, corresponding to the multiplication with ’02’ mod-
ulo the irreductible polynomial m(x) = x8 + x4 + x3 + x + 1: X : GF (28) →
GF (28) : X(a) = b ⇔

b(7) = a(6)
b(6) = a(5)
b(5) = a(4)
b(4) = a(3)⊕ a(7)
b(3) = a(2)⊕ a(7)
b(2) = a(1)⊕ a(7)
b(1) = a(0)
b(0) = 0⊕ a(7)

The round key addition σ[K]: In this operation, a round key is applied to
the state by a simple bitwise EXOR. The round key is derived from the cipher
key by means of the key schedule. The round key length is equal to the block
length.

σ[k](a) = b ⇔ bi = ai ⊕ ki, 0 ≤ i ≤ 15 (4)
The round transformation ρ[K]: The round transformation can be written
as a composition of the four previous transformations:

ρ[K] = σ[K] ◦ θ ◦ δ ◦ γ = σ[K]
(
θ(δ(γ))

)
(5)

The key schedule: The round keys are derived from the cipher key by means
of the key schedule. This consists of two transformations: the key expansion and
the round key selection. In our description, SubWord (SW) is a function that
takes a 4-byte word in which each byte is the result of applying the Rijndael s-
box. The function RotWord (RW) returns a word in which the bytes are a cyclic
permutation of those in its inputs such that the input word (a, b, c, d) produces
the output word (b, c, d, a). Finally, RC(i) is an 8-bit round constant for the
round i.
The key schedule can be easily described by the use of a key round β that takes
four 4-byte input words, corresponding to a 128-bit key, and produces four 4-byte
output words. The first round key K0 is the cipher key, then, we have:

Ki+1 = β(Ki), i = 0, ..., 10 (6)

Figure 2 illustrates the key round of Rijndael.
The complete cipher: Rijndael is defined for the cipher key K as the trans-
formation Rijndael[K]= α[K0,K1, ..., K10] applied to the plaintext where:

α[K0,K1, ..., K10] = σ[K10] ◦ δ ◦ γ ◦ (©9
r=1ρ[Kr]) ◦ σ[K0] (7)

Our implementations are based on this description of AES Rijndael.

0,iK R
W

S
W

⊕

⊕

⊕

⊕
⊕

1,iK

2,iK

3,iK

0,1+iK

1,1+iK

2,1+iK

3,1+iK

)(iRC

Fig. 2. The key round β.

4 Implementation tradeoffs

The optimization methods and the resulting implementation tradeoffs for the im-
plementation of AES Rijndael can be divided into two classes: architectural and
algorithmic optimization. Algorithmic optimization exploits algorithmic strength
inside each round unit. Architectural optimization exploits design techniques
such as pipelining, loop unrolling and sub-pipelining.
This paper first considers loop architectures, where only a small number m
(typically m = 1) of rounds are independently implemented in hardware. Loop
architectures enables small area circuits but have low throughput. Then we im-
prove the throughput at the cost of increased area by the combination of loop
unrolling and pipelining. Unrolled architectures have a large number m of
rounds (typically all) that are independently implemented in hardware. Pipelin-
ing increases the encryption speed by processing multiple blocks of data simul-
taneously. It is achieved by inserting rows of registers among combinatorial logic.
Parts of logic between two consecutive registers form pipeline stages. In case of
block ciphers, each round constitutes a pipeline stage. Finally, sub-pipelining
is similar to pipelining but also inserts registers inside the round functions.
Concerning algorithmic optimizations, we focused on the critical parts of Rijn-
dael. Different schemes for the substitution box are proposed and compared. We
also underline interesting combinations of the MixColumns θ with the key addi-
tion σ[K]. In this section, we propose a rigorous study of the possible tradeoffs
for implementing Rijndael.

4.1 Design methodology

In [18], a methodology to implement block ciphers in reconfigurable hardware is
presented, based on simple digital design rules applied to iterated block ciphers.
Looking at the round functions of iterated block ciphers, it is observed that
they are mainly built on simple algebraic or logic operations. Therefore, the
sub-pipelining of round functions is mandatory if efficient designs are wanted.
Practically, the designer can easily keep his critical path inside one CLB slice.
Moreover, looking at the CLB strcture, it can be seen that FPGAs involve specific

constraints that have to be taken into account if an optimal design is wanted.
As the slice of Figure 1 is divided into logic elements and storage elements,
an efficient implementation will be the result of a better compromise between
combinatorial logic used, sequential logic used and resulting performances. These
observations lead to different definitions of implementation efficiency:

1. In terms of performances, let the efficiency of a block cipher be the ratio
Throughput (Mbits/s)/Area (slices).

2. In terms of resources, the efficiency is easily tested by computing the ratio
Nbr of LUTs/Nbr of registers: it should be close to one.

Our implementations of Rijndael were designed in order to maximize these no-
tions of hardware efficiency. It practically results in the sub-pipelining of every
component of the round functions. The next section studies algorithmic opti-
mizations combined with good sub-pipelining. For this purpose, we define the
maximum pipeline as the pipeline of which number of stages implies that the
ratio Nbr of LUTs/Nbr of registers is the closest to one (and lower than one).

4.2 Algorithmic optimizations: a first tradeoff

A. Implementing the substitution box: The Rijndael S-box is a non-
linear byte substitution used 200 times in Rijndael with 128-bit block length
and key length. It is invertible and is constructed by the composition of two
transformations:

1. The mapping x → x−1, where x−1 represents the multiplicative inverse in
the field GF(28).

2. An affine transformation over GF(2): x → Ax + b, where A and b are con-
stants.

In terms of hardware resources, the substitution box is the most expensive part
of Rijndael. As a consequence, its implementation is a critical part in the design
of an efficient encryption core. This transform can be implemented following
different schemes. We propose to observe three possibilities and the resulting
constraints.

A1. The multiplexor model: A first and obvious solution is to consider
SubBytes as a large multiplexor and take advantage of special FPGA configu-
rations to implement these ones. Figure 3 illustrates the implementation of an
output bit of the Rijndael s-box. We pipelined γ by inserting two register levels
so that the critical path corresponds to one 4-input LUT, one multiplexor F5 and
one multiplexor F6. Table 1 summarizes the synthesis results for the non-linear

Component Nbr of LUT Nbr of registers

γ 144× 16 = 2304 42× 16 = 672

Table 1. Synthesis of the non-linear layer γ.

transform γ where the s-box is repeated 16 times.

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

MUXF5

MUXF5

MUXF5

MUXF5

MUXF5

MUXF5

MUXF5

MUXF5

MUXF6

MUXF6

MUXF6

MUXF6

LUT3

LUT3

MUXF5

Fig. 3. The substitution box γ.

A2. RAM-based implementation: Another possibility is to use the RAM
blocks available inside the VIRTEX to implement substitution boxes. The re-
sulting SubBytes transform uses 8 RAM blocks and is performed in one clock
cycle.

A3. Composite field solution: In AES Rijndael, every byte represents an
element in the finite field GF(28). It can also be represented as a polynomial of
degree 8 in the field GF(2): b7.x

7+b6.x
6+b5.x

5+b4.x
4+b3.x

3+b2.x
2+b1.x

1+b0.
Addition and substraction of polynomials are given by the sum modulo 2 of the
coefficients of both terms (bitwise XOR). Multiplication in GF(28) corresponds
to multiplication of polynomials modulo an irreductible binary polynomial of de-
gree 8. Rijndael uses m(x) = x8 +x4 +x3 +x+1. As the irreductible polynomial
is used to construct the field and there are different irreductible polynomials
of degree 8, several finite fields can be considered and generate different repre-
sentations of Rijndael. These fields are isomorphic which means that there is a
one-to-one mapping from one representation of Rijndael to another. Finally, the
multiplicative inverse of a polynomial b(x) is defined such that:

b(x).b−1(x) = 1.mod.m(x) (8)

In [19], subfield arithmetics are used to propose efficient implementations of
Galois Field arithmetic, especially in the context of the Rijndael block cipher.
Computations in the field GF(28) are replaced by computations in the composite

field GF(24)2 in order to reduce the size of the tables needed for the inversion.
Basically, the idea is to consider our polynomial of degree 8 in the field GF(2) as a
polynomial of degree 2 in the field GF(24), say a1x + a0, where a0, a1 ∈ GF (24).
The multiplicative inverse of a1x + a0 is computed in the field GF (24)2 as a
polynomial b1x + b0 such that:

(a1x + a0)× (b1x + b0) = 1.mod.P (x) (9)

Where P (x) is an irreductible polynomial and coefficients b0, b1 can be expressed
as follows:

b1 = a1.(a2
0 + a1a0 + ∆a2

1)
−1

b0 = (a0 + a1).(a2
0 + a1a0 + ∆a2

1)
−1 (10)

[19] gives details about parameter ∆ and polynomial P (x) as well as an affine
transform that maps elements of GF (28) to elements of GF (24)2. We imple-
mented the resulting composite field s-box as represented in Figure 4. We in-

0a 1a λ

∆

0a 1a 1a

⊕ 2a

⊗

1−a

1a0a

⊗
⊗

0b 1b

⊕

⊕

⊕

Galois Field Transform

Galois Field Transform

Affine Transform

8

s-box out

Fig. 4. The composite substitution box.

serted seven pipeline levels in order to get the ratio Nbr of LUTs/Nbr of
registers close to one. Remark that this representation of the substitution box
allows to keep the whole design unchanged as the Galois Field transform is used

Component Nbr of LUT Nbr of registers

γ 84× 16 = 1344 76× 16 = 1216

Table 2. Synthesis of the composite non-linear layer γ.

twice in order to be compatible with other transforms. Table 2 summarizes the
synthesis results for the composite non-linear transform γ where the s-box is
repeated 16 times. Compared to the multiplexor model, we have traded LUTs
for registers, and obtained a better efficiency.

B. Implementing the other components: the Mixadd combination.

B1. The ShiftRows transform δ: This is just routing information and takes
no place in the design.

B2. The MixColumns transform θ: Mixcolum operates on a 4-byte column
and corresponds to multiplications and additions in GF (28). For example, for
the output byte b0, we have:

b0 =′ 02′a0 +′ 03′a1 +′ 01′a2 +′ 01′a3 (11)

We implemented multiplications with a function X that corresponds with the
multiplication with ’02’, modulo the irreducible polynomial m(x) = x8 + x4 +
x3 +x+1. Figure 5(a) illustrates the function X. Note that output bits 0,2,5,6,7

0a1a2a3a4a5a6a7a

0b1b2b3b4b
5b6b7b

⊕ ⊕ ⊕

0a 1a 2a 3a

X X X

⊕

0a 1a 2a 3a

0b

(a) (b)

X

Fig. 5. (a) The function X. (b) Output byte b0 of MixColumns.

just correspond to input bits shifted. Only 3 bits are modified by an EXOR
operation. From this, we can easily represent an output byte of θ as shown in
Figure 5(b):

b0 = X(a0)⊕X(a1)⊕ a1 ⊕ a2 ⊕ a3 (12)

Interesting combinations between MixColumns and the key addition can be per-
formed when observing the structure of the Virtex slice (see Figure 1). Indeed,
we observe that a slice offers the possibility to perform an EXOR between 5
bits: four bits are managed by the LUT and the last one by an EXOR gate next
to the LUT. Our Mixadd transform takes advantage of this configuration and
keeps the critical path inside one Virtex slice.

B3. The Mixadd transform ε: In Figure 5(b), we observe that an output
byte of θ is obtained by a bitwise EXOR between 5 bytes: 3 are input bytes and
the remaining ones are output bytes of function X. However, looking at the bit
level, we know that 5 output bits of X are just shifted input bits. For these ones,
only one register is needed to pipeline the diffusion layer.

For the 3 remaining bits, there is an additional EXOR inside the function X.
Therefore, for these bits, we compute the bitwise EXOR between the 3 left bytes
of Figure 5(b) and the output bits of X independently. Then we insert a register.
A bitwise EXOR operation remains to be carried out and we combine it with
the key addition. The resulting Mixadd transformation only needs two register
levels to keep a critical path inside one slice.

Figure 6(a) illustrates the combination of MixColumns and Addroundkey at
the bit level. Finally, Table 3 summarizes the synthesis results for the Mixadd

0a1a2a3a4a5a6a7a

0b1b2b3b4b
5b6b7b

⊕ ⊕ ⊕

0a2a3a

⊕⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕
⊕

⊕
⊕

7c 5c6c 4c
3c 2c 1c 0c

txt key

σ ⊕ key(1)

state(1)

ρ
β

state(2)

key(2)

ρ
β

state(3)

key(3)

... ...
state(9)

ρ
β

state(10)

key(9)

β
γ
δ

σ ⊕

cipher

key(10)

(a) (b)

Fig. 6. (a) Mixadd transform at the bit level. (b) AES Rijndael: unrolled architecture.

transformation.

Component Nbr of LUT Nbr of registers

ε 304 304

Table 3. Synthesis of the Mixadd transform ε.

4.3 Implementation schemes: a second tradeoff

Depending on different optimization criteria, different architectures can be em-
ployed. Optimization for maximum speed can be achieved by a fully pipelined
unrolled architecture. In the applications requiring minimum area, a loop archi-
tecture with only one round implemented seems to be the best choice. In both
cases, we tried to maximize the efficiency defined in section 4.1.

Our implementations of AES Rijndael directly results from the previous compo-
nent descriptions. For high throughput constraints, we implemented a pipeline
version that unrolls the 10 AES rounds illustrated in Figure 6(b). For low

txt key

σ ⊕ key(1)

state(1)

β
ρ

γ
δ

σ ⊕

cipher

key(10)

key(r)

txt key

key(1)

β
γ

δ

σ

cipher

key(r)

θ
LAST

ROUND

(a) (b)

Fig. 7. AES Rijndael: loop architecture (a) and (b).

area constraints, we propose sequential implementations with only one unrolled
round. Figure 7(a) uses the optimized combination of MixColumns and addkey
and its grey functions are actually included into the round ρ. Figure 7(b) modi-
fies the round structure so that the initial and final key additions are managed
inside the round. It is important to remark that the modification of the round
structure implies the loss of our mixadd combination and needs an additional
multiplexor for the last round of the algorithm. As a consequence it presents no
practical advantage in our FPGA implementations but would probably be the
best choice for ASICs where the CLB structure does not exist and for which the
mixadd optimization is therefore not relevant.

For all our proposals, we evaluated the hardware cost in terms of LUTs, regis-
ters and slices as well as the frequency results. These results are estimated after
implementation, using XILINX ISE5.

4.4 Optimal pipeline: a third tradeoff

The design methodology and algorithmic optimization of previous sections al-
lowed us to reach very interesting frequencies after synthesis. However, the im-
plementation (and specially the routing task) of large designs was a critical
constraint in our designs. Practically, our most pipelined circuits presented sur-
prising delays including 20% of logic and 80% of routes. We concluded that the
real bottleneck of such large ciphers is the difficulty of having an efficient place
and route: in case of complex circuits, high pipelining is not mandatory. More-
over, as the difficulty of the place and route task is hardly evaluated, a new
practical problem is to find the best tradeoff between good synthesis results and
good implementation results. We propose the heuristic of Algorithm 1 to solve
this last optimization problem. This heuristic led us to the optimized results of
the next section where we mention the optimal number of pipeline stages.

Algorithm 1 Optimal pipeline search
1. Start from the maximal pipeline defined in section 4.1, i.e. implement Rijndael with
the best ratio Nbr of LUTs/Nbr of registers;
2. After implementation, compute the efficiency Ecur = Throughput (Mbits/s)/Area
(slices);
3. OK = 0;
While OK = 0 do {

1. Remove the pipeline stage that involves the lowest frequency reduction
and re-implement Rijndael;
2. After implementation, compute the efficiency Enxt = Throughput
(Mbits/s)/Area (slices);
3. If Ecur ≥ Enxt then OK = 1;

else Ecur = Enxt;
}

4. The final efficiency Ecur specifies the optimal pipeline;

5 Practical results and comparisons

In order to take every possible tradeoff into account in this section, we list our
results for different architectures and different substitution boxes. The tables
presented are based on the optimal pipeline defined in previous section. Loop
architectures (Figure 7(a)) are in Table 4. Unrolled architectures (Figure 6(b))
are in Table 5.

Type Nbr Nbr Nbr RAM Latency Output Freq. after Throughput
of of of blocks (cycles) every Impl. (Mbits/sec)

LUT reg. slices (cycles) (Mhz)

LUT-based γ 3846 2517 2257 0 52 5/52 169 2008

RAM-based γ 877 668 542 10 21 2/21 119 1450

Composite γ 2524 2185 1767 0 82 8/82 167 2085

Table 4. Rijndael encryption: loop architectures on VIRTEX3200E.

Type Nbr Nbr Nbr RAM Latency Output Freq. after Throughput
of of of blocks (cycles) every Impl. (Mbits/sec)

LUT reg. slices (cycles) (Mhz)

LUT-based γ 33712 14592 19072 0 42 1 86 11008

RAM-based γ 3516 3840 2784 100 21 1 92 11776

Composite γ 19752 13479 15112 0 72 1 145 18560

Table 5. Rijndael encryption: unrolled architectures on VIRTEX3200E.

Type Nbr of Nbr of RAM Throughput Throughput/Area

LUTs slices blocks (Mbits/s) (Mbits/s
slices,LUTs

)

McLoone et al. [9] / 2222 100 6956 3.1

Our design 3516 2784 100 11776 4.2

Helion tech. [10] 899 / 10 1187 1.32

Our design 877 542 10 1450 1.65

Satoh et al. composite [15] / 1880 0 589 0.31

Our design 2524 1767 0 2085 1.17

Satoh et al. mux [15] / 2529 0 833 0.33

Our design 3846 2257 0 2008 0.88

Table 6. Comparisons with other implementations on VIRTEX-E technology.

Finally, in Table 6, we compare our results with the best implementations
of Rijndael encryption on VIRTEX-E technology found in literature. For RAM
based substitution boxes, McLoone and McCanny had the best unrolled imple-
mentation in CHES 2001 [9] while Helion Technologies [10] had the best loop
architecture. For LUT-based substitution boxes, we have no knowledge of any
unrolled architecture but Satoh and Morioka presented in ASIACRYPT 2001 and
in the Third NESSIE workshop the best results for loop implementations [15,
20]. They studied mux-modeled s-boxes as well as composite ones. Finally, con-
cerning older technologies2, we report in Table 7 an old result of our LUT-based
loop architecture and compare it with results of the last AES conference [3–6].
It is obvious that the methodology applied allowed us to significantly improve
previously reported performances of Rijndael implemented in FPGAs.

6 Conclusion

When implementing block ciphers, several strategies can produce effective de-
signs. Based on recently published works and observations about Rijndael, we
studied different possible implementation tradeoffs. Inherent constrainst of FP-
GAs were taken into account in order to define an efficient methodology. We
defined notions of hardware efficiency and optimal pipeline and our circuits were
designed in order to optimize different possible architectures: loop and unrolled.
Inside these architectures, we proposed algorithmic optimizations for the sub-
stitution box but also efficient combinations between the diffusion layer and the
key addition.
Upon comparison, our circuits offer better performance than previously reported

2 Most of the AES performance evaluation was done on VIRTEX1000 FPGAs.

in literature. Compact and high speed architectures are proposed and imple-
mented on VIRTEX-E technology. Throughput is up to 18.5 Gbits/sec and area
requirements can be limited to 542 slices and 10 RAM blocks with an improved
ratio throughput/area. Optimized efficiency was obtained by applying heuristic
rules in order to deal with place and route constraints.

Type Nbr of Device Throughput Throughput/Area

slices (Mbits/s) (Mbits/s
slices

)

Gaj et al. 2900 VIRTEX1000 331.5 0.11

Dandalis et al. 5673 VIRTEX1000 353 0.06

Elbirt et al. 9004 VIRTEX1000 1940 0.22

Our design 2257 VIRTEX1000 1563 0.69

Table 7. Comparisons with the last AES conference.

References

1. Xilinx: Virtex 2.5V Field Programmable Gate Arrays Data Sheet, http://www.xilinx.com.
2. J.Daemen and V.Rijmen, AES Proposal: Rijndael, NIST’s AES home page, http :

//www.nist.gov/aes.
3. A.J.Elbirt et Al, An FPGA Implementation and Performance Evaluation of the AES Block

Cipher Candidate Algorithm Finalists, The Third Advanced Encryption Standard (AES3) Can-
didate Conference, April 13-14 2000, New York, USA.

4. K.Gaj and P.Chodowiec, Comparison of the Hardware Performance of the AES Candidates
using Reconfigurable Hardware, The Third Advanced Encryption Standard (AES3) Candidate
Conference, April 13-14 2000, New York, USA.

5. P.Chodowiec et al, Experimental Testing of the Gigabit IPSec-Compliant Implementations of
Rijndael and Triple-DES Using SLAAC-1V FPGA Accelerator Board, in the proceedings of
ISC 2001: Information Security Workshop, LNCS 2200, pp.220-234, Springer-Verlag.

6. A.Dandalis et al, A Comparative Study of Performance of AES Candidates Using FPGAs,
The Third Advanced Encryption Standard (AES3) Candidate Conference, April 13-14 2000,
New York, USA.

7. T.Ichikawa et al, Hardware Evaluation of the AES Finalists, The Third Advanced Encryption
Standard (AES3) Candidate Conference, April 13-14 2000, New York, USA.

8. O.Kwon et al, Implementation of AES and Triple-DES Cryptography using a PCI-based FPGA
Board, in the proceedings of ITC-CSCC 2002: The International Technical Conference On Cir-
cuits/Systems, Computers and Communications.

9. M.McLoone and J.V.McCanny, High Performance Single Ship FPGA Rijndael Algorithm Im-
plementations, in the proceedings of CHES 2001: The Third International CHES Workshop,
Lecture Notes In Computer Science, LNCS2162, pp 65-76, Springer-Verlag.

10. Helion Technology, High Performance AES (Rijndael) Cores for XILINX FPGA, http :
//www.heliontech.com.

11. V.Fischer and M.Drutarovsky, Two Methods of Rijndael Implementation in Reconfigurable
Hardware, in the proceedings of CHES 2001: The Third International CHES Workshop, Lecture
Notes In Computer Science, LNCS2162, pp 65-76, Springer-Verlag.

12. CAST, AES Encryption Cores, http : //www.cast− inc.com.
13. Amphion Semiconductor, CS5210-40: High Performance AES Encryption Cores, 2001.

http://www.amphion.com/cs5210.html
14. N.Sklavos, O.Koufopavlou, Architecutre and VLSI Implementations of the AES-Proposal Ri-

jndael, in IEEE Transactions on Computers, Volume 51, Number 12, pp1454-1459, December
2002.

15. A.Satoh et al, Compact Hardware Architecture for 128-bit Block Cipher Camellia, in the
Proceedings of the Third NESSIE Workshop, november 6-7, 2002, Munich, Germany.

16. N.Weaver and J.Wawrzynek High Performance Compact AES Implementations in Xilinx FP-
GAs, http://www.cs.berkeley.edu/ nweaver/Rijndael.

17. Xinmiao Zhang, Parhi K.K., Implementation approaches for the advanced encryption standard
algorithm, in IEEE Circuits and Systems Magazine, pp 24-46, Fourth Quarter 2002.

18. FX.Standaert, G.Rouvroy, JD.Legat, JJ.Quisquater, A Methodology to Implement Block Ci-
phers in Reconfigurable Hardware and its Application to Fast and Compact AES Rijndael, in
the proceedings of FPGA 2003: the Field Programmable Logic Array Conference, February 23-25
2003, Monterey, California.

19. A.Rudra et al, Efficient Rijndael Encryption Implementation with Composite Field Arith-
metic, in the proceedings of CHES 2001: The Third International CHES Workshop, Lecture
Notes In Computer Science, LNCS2162, pp 65-76, Springer-Verlag.

20. A.Satoh et al, A Compact Rijndael Hardware Architecture with S-Box Optimization, Advances
in Cryptology - ASIACRYPT 2001, LNCS 2248, pp239-254, Springer-Verlag.

21. J.Wolkerstorfer, E.Oswald, M.Lamberger, An ASIC Implementation of the AES SBoxes, in the
proceedings of CT-RSA 2002, LNCS 2271, pp67-78, Springer-Verlag.

	1: * This work has been funded by the Walloon region (Belgium) through the research project TACTILS.

