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Abstract

The image compression standard JPEG 2000 proposes a ldrgé features, useful for today’s
multimedia applications. Unfortunately, it is much moremgdex than older standards. Real-time appli-
cations, such as Digital Cinema, require a specific, seaulesaalable hardware implementation. In this
paper, a decoding scheme is proposed with two main chaisitsr First, the complete scheme takes
place in an FPGA, without accessing any external memorgwallg integration in a secured system.
Second, a customizable level of parallelization allowsatis§y a broad range of constraints, depending
on the signal resolution. The resulting architecture isdfare ready to meet upcoming Digital Cinema

specifications.
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A Flexible, Hardware JPEG 2000 Decoder for

Digital Cinema

. INTRODUCTION

The development and diversification of computer networksvels as the emergence of new imaging
applications have highlighted various shortcomings issilaimage compression standards, such as JPEG.
Consequently the JPEG Committee decided to develop a negeig@mpression algorithm : JPEG 2000
[1]. This standard has a much higher compression efficiendyemables inherently various features such
as lossy or lossless encoding, resolution and quality sii&a regions of interest, error resilience,...
A comprehensive comparison of this norm with other starglapgrformed in [2], demonstrates the
functionality improvements provided by JPEG 2000.

The techniques enabling the features described above asvelat transform (DWT) followed by an
entropy coding of each subband. In the JPEG 2000 baselieeydelet transform may use two filter-
banks: a lossless 5-3 and a lossy 9-7. The entropy codingcstegists of a context modeling and an
arithmetic coding. The drawback of the JPEG 2000 algoriththat it is computationally expensive, much
more than the techniques used in JPEG [2]. This complexitybeaa problem for real-time applications.

Digital Cinema (DC) is one of these real-time applicatioAs. explained in [3], edition, storage or
distribution of video data can largely benefit from the JPEHB®feature set. Concerning compression
efficiency, the very high quality required by such applicatimakes the JPEG 2000 intra-frame com-
pression scheme a valuable alternative to inter-framengosichemes from the MPEG family. Moreover,
a video format called Motion JPEG 2000 has already been degjgwhich encapsulates JPEG 2000
frames and enables synchronization with audio data [4].

In the DC scenario, the movie is compressed and cipherelineffand then transmitted securely to
the movie theater. The movie is stored locally and has to hddd in real-time at each screening. This
process includes a decryption, a decompression and syrizhtion of the image and audio streams,
a possible overlay addition (i.e. subtitles) and waternmgrkAmong these tasks, the decompression of
each JPEG 2000 frame is the most complex one and requiresofntbet resources to stand a chance to
satisfy the targeted throughputs.

In this paper, a hardware JPEG 2000 decoder architectierndatl for Digital Cinema is presented. It

has been designed in VHDL, and synthesized and implementad FPGA (Xilinx XC2V6000-6 [5]).
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It should be noted that nothing in this architecture prev¢ntimplement it as an ASIC. Nevertheless, a
FPGA was chosen because we believe its flexibility is morediato the relatively small DC market.
Although standards are being prepared, technical reqemémnare indeed very likely to continue to
evolve. Moreover, recent improvements in the technologhsas the integration of microprocessors or
high-speed IOs further increase the interest for this kihglatform. The proposed architecture decodes
images line by line without accessing any external memdlgwang integration in a secured system. It
is highly parallelized and depending on available hardwaseurces, it can easily be adapted to satisfy
various formats, and specific constraints like secure dagptbssless capabilities, and higher precision
(over 8 bits per pixel-component). The three main blockshef architecture are an Inverse DWT block
(IDWT), a Context Modeling Unit (CMU) and an Arithmetic Deding Unit (ADU).

Concerning the DWT part, many architectures have beenghadiin the literature. Fast and efficient
designs are based on the lifting scheme [6] and consist @ratgd or combined 5-3 and 9-7 transforms
[7]1-[10]. The last two above-mentioned papers also proposememory wavelet image compressions
based on a line-based transform. The most recent and effieggk [10] details an architecture combining
5-3 and 9-7 wavelet filters with one decomposition level aitsb @roposes a solution to minimize
the number of lines kept in internal buffers. Concerning tevelet part of our paper, a complete
implementation of the inverse discrete wavelet transfoldW\T) with five levels of recompaosition is
achieved. In order to meet lossless real-time applicatiorgs cost constraints, our design is focused on
the 5-3 transform and is based on reduced internal memories.

Some papers detail a complete hardware entropy coding [[I3]]-Each of these papers propose a
different and interesting design approach to the entrogingp but are all based on ASIC technology.
Our approach is optimized for FPGA and is based on the phralbele defined in JPEG 2000. This
parallelization allows us to propose an innovating appno&ur context modeling part deals with three
pass blocks in parallel and, compared to [11], reduces thi®l Réed by 25%. References [12] and [13]
also propose an arithmetic encoding architecture. Contathem, we benefit from the parallel mode
mentioned above, which significantly improves the globabtighput of the entropy decoding chain.

Complete implementations have also been recently desciibene academic paper [12] and at least
two industrial papers [14], [15]. Nevertheless, the conuiadmpapers show the global architecture only
briefly and give direct results without important designailst The flexibility of our decoder and the
large image size managed in real-time make our paper arctatgasolution for the upcoming Digital
Cinema specifications.

The rest of the paper is organized as follows. Section liflyriescribes the JPEG 2000 algorithm. In
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Fig. 1. JPEG 2000 coding steps.

Section Ill, we present our decoder architecture as welluasroplementation choices. The main blocks
of the architecture are described in more detail in Sectivh® VI. The performance of the system is

discussed in Section VII and the paper is concluded in Seatidl.

Il. JPEG 2000 Bsics
A. Algorithm overview

In this Section, concepts and vocabulary useful for the tstdading of the rest of the paper are
presented. For more details, [1] or [16] should be refercedreaders familiar with JPEG 2000 should
skip this Section. Although decoder architecture has been implementmtoding steps are explained
here because their succession is easier to understand.etheidg process is achieved by performing
these steps in reverse order. Fig. 1 presents the codingsbtbat are explained below.

First of all, the image is split into rectangular blocks edlitiles. They are compressed independently.
An intra-component decorrelation is then performed on ilee on each component discrete wavelet
transformis carried out. Successive dyadic decompositions are exhpiach uses a bi-orthogonal filter
bank and splits high and low frequencies in the horizonta a@rtical directions into four subbands.
The subband corresponding to the low frequencies in the twextibns (containing most of the image
information) is used as a starting point for the next decasitjpm, as shown in Fig. 1. The JPEG 2000
Standard performs five successive decompositions by defawb filter banks may be used: either the
Le Gall (5,3) filter bank, for lossless encoding, or tbaubechieq9,7) filter bank, for lossy encoding.
This part is further detailed in Section VI-A.

Every subband is then split into rectangular entities datlede-blocks. Each code-block is compressed
independently using eontext-based adaptive entropy codéreduces the amount of data without losing
information by removing redundancy from the original binaequence. “Entropy” means it achieves
this redundancy reduction by using the probability estenaif the symbols. Adaptability is provided by

dynamically updating these probability estimates durimg ¢oding process. And “context-based” means
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that the probability estimate of a symbol depends on itshimghood (its “context”). Practically, entropy
coding consists of
« Context Modelingthe code-block data is arranged in order to first encode itsenthich contribute
to the largest distortion reduction for the smallest inseeim file size. In JPEG 2000, the Embedded
Block Coding with Optimized Truncation (EBCOT) algorithrh7] has been adopted to implement
this operation. The coefficients in the code-block are l@Etp encoded, starting with the most
significant bit-plane. Instead of encoding the entire ldRp in one coding pass, each bit-plane is
encoded in three passes with the provision of truncatingbibistream at the end of each coding
pass. During a pass, the modeler successively sends eaitfatiteeds to be encoded in this pass
to the Arithmetic Coding Unit described below, togetherhwits context. The EBCOT algorithm is
further detailed in Section IV-A.

« Arithmetic Codingthe Context Modeling step outputs are entropy coded usM@eacoder, which is
a derivative of the Q-coder [18]. According to the providexhtext, the coder chooses a probability
for the bit to encode, among predetermined probability eslsupplied by the JPEG 2000 Standard
and stored in a look-up table. Using this probability, it ethes the bit and progressively generates
code-words, called segments. This algorithm is furtheaitist in Section V-A.

During the rate allocation and bit-stream organizatiorsteps, segments from each code-block are
scanned in order to find optimal truncation points to achiesgous targeted bit-rates. Quality layers are
then created using the incremental contributions from eacte-block. Compressed data corresponding
to the same component, resolution, spatial region andtgualier is then inserted in a packet. Packets,

along with additional headers, form the final JPEG 2000 csiceam.

B. Complexity and hardware considerations

The main weakness of JPEG 2000 is its complexity. As showt3ii fhis complexity is mainly due to
the entropy coder, which requires over half the computaiime. This can be explained by the bit-level
processing of the JPEG 2000 entropy coder, as opposed tdP#H@ Huffman coder, which only deals
with entire samples. AnV-bits sample is processed a& distinct samples by the EBCOT. Moreover,
each bit-plane is entirely scanned by three successivepastile each bit of this bit-plane is encoded
only once, in one of the three passes. If we assume that eashspands one clock-cycle on each bit of
the bit-plane, each sample will then neAd« 3 clock-cycles to be processed by the EBCOT, while one
single clock-cycle will usually be sufficient in the otheegs (like the DWT). Finally, this huge amount

of clock-cycles needed by the entropy coder is even greatirei decoding scheme: a feedback loop that
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TABLE |
RESOURCES REQUIRED TO REACIDIGITAL CINEMA THROUGHPUTS FOR EACH IMAGE PROCESSING BLOCKTHE FRAME

DECOMPRESSION IS THE BOTTLENECK

Slices | RAM [Kbits]
Decryption [20] 200 54
Watermarking [21] 2500 72
Decompression (Our) | 27 000 1602

does not exist at the encoder side forces the EBCOT to waithioitMQ-decoder answer before being
able to further process the code-block. This means that maits of the EBCOT and MQ algorithm
cannot be executed concurrently, which implies additiodial time.

Concerning the DWT part, the computational complexity iscmlower, but the memory requirements
might be very high as tiles are handled entirely (in compariwith the8 x 8 DCT-blocks in JPEG).

Eventually, the system level raises several implememtgaioblems. In particular, resources required to
interface the entropy coding and DWT sub-systems are nghgilge. In a decoding scheme which is the
one of interest in this paper, samples are produced by tmepyntoder, bit-plane by bit-plane, one code-
block at a time. Those samples are then processed by theséndWT, coefficient by coefficient, one line
at a time. This difference in the way each sub-system presasata either implies tight synchronization
between those sub-systems, or additional memory resotaréeisthem work independently ([19], p.690).

Fortunately, well-chosen encoding options and hardwam@ementation choices can help face this
complexity. Depending on the constraints of the applicatargeted, several trade-offs between area,
throughput and compression efficiency can be found. In thisep we have focused on the Digital

Cinema application. Choices made in this framework areildétin the next Section.

Ill. PROPOSED ARCHITECTURE

Among all the tasks that have to be carried out to provide aptetem JPEG 2000 Digital Cinema
solution, we are only concerned with the frame decomprassithis paper. This task is indeed the bot-
tleneck of such a solution. Other image processing bloaksh ss decryption [20] or watermarking [21]
(see Fig. 2), are far less expensive if we want to reach Digitaema throughputs. Table | compares
the resources needed to achieve each of these operatioriBigital Cinema framework.

In this Section, we first present the constraints used forJREG 2000 decoder architecture. Then,

implementation choices made to meet these constraintsxptaired. Finally, the complete architecture
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Fig. 2. A secure decoding scheme.

is presented.

A. Constraints

As our decoder is designed for real-time Digital Cinema ps3ing, three main constraints have been

identified:

« High output bit-rate all implementation choices have been made to increaseitiaté. Using the
Xilinx XC2V6000-6, we wanted our architecture to meet astethe 1080/24p HDTV format. This
means an output rate of about 1200 megabits per second (Ntop8&)bit 4:4:4 images.

« Security no data flow may transit outside the FPGA if it is not cryptedwatermarked. This
constraint enables a completely secured decoding schesniweadecompression block might be
inserted between a decryption block and a watermarkingkblih@se three blocks all being in the
same FPGA (Fig. 2).

« Flexibility: computationally intensive parts of the decoding processtnie independent blocks
which can easily be duplicated and parallelized. This adldine proposed architecture to meet a
broad range of output bit-rates and resource constraihes.design can therefore easily be adapted

to upcoming Digital Cinema standards.

B. Implementation choices

To meet these constraints, the following implementationicds have been made. Note that some
of these choices imply specific encoding options: the cpording command-line is detailed in the
Appendix.

No external memoryas been used, meeting the security constraint and alseasiog the output
bit-rate, as the bandwidth outside the FPGA is significastywer than inside. As internal memory
resources are limited, large image portions cannot be ¢tane the decoding process must be achieved

in a line-based mode.
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Fig. 3. Customized code-block dimensions.

To increase the output bit-rate, thrparallelizationlevels have been used. The first is a duplication of
the entire architecture, which allows various tiles to mudianeously decoded. The second parallelization
level tries to compensate the computation load differerevéen the Entropy Decoding Unit (EDU)
and the IDWT. This is possible as each code-block is decodéepiendently. Finally, a third level of
parallelization, known in the JPEG 2000 Standard as thellperaode, is obtained inside each EDU.
By default, each bit-plane is decoded in three successissgsabut, by specifying some options ( [19],
p.508) during the encoding process, it becomes possibledod® simultaneously the three passes. This
implies that each EDU contains one Context Modeling Unit (QNnd three Arithmetic Decoding Units
(ADU).

Another encoding option that increases the throughputdshtipass modé [19], p.504). The more
correlated the probability estimates of the bits to encode t#he more efficient the ADU is. This is
especially the case in the most significant bit-planes witthite last bit-planes are totally uncorrelated
most of the time. With the bypass mode enabled, these latipiames are therefore raw-coded

Some choices abournhage partitioninghave also been made. A2 x 512 tile partition avoids the use
of external memory and enables the first parallelizatioellewentioned above. Inside each tile, even if
the maximum code-block size specified in the standard ise4pifels, it does not exceed 2,048 pixels
in our implementation. As we will see, this does not inducg significant efficiency loss but allows a
50% economy on memory resources.

Furthermore, the code-block dimensions have been chostiraseach systematically covers the width
of the subband to which it belongs (Fig. 3). As the IDWT prasssthe subband data line by line, such
code-block dimensions enable a line-based approach ofvtralbprocess, reducing the size of the image
portions to be stored between the EDU and the IDWT.

These last implementation choices (parallel mode, bypasdenand image partitioning) imply an

1This means they are inserted as such in the bit-stream.
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TABLE Il

AVERAGE PSNRFOR FIVE512x512 GRAY-SCALED IMAGES (Lena Boat, Goldhill, BarbaraAND Woman), 8 BPP

Compression PSNR [dB]

ratio Default options | Options used
1:4 42,33 41,76 (-1.35%)
1:8 37,42 36,75 (-1.78%)
1:16 33,36 32,67 (-2.08%)
1:40 29,17 28,58 (-2.04%)
1:80 26,74 26,20 (-2.01%)
1:160 24,77 24,29 (-1.93%)

T T
—— Default options
— Options used

Fig. 4. Average PSNR vs Compression ratio for the five tesgaaaand the two encoding options sets.

efficiency loss during the encoding process. Table Il and4dFsgpow the correspondir@SNRIosses for
various compression ratios. Five 512x512 gray-scaled @ndgena Boat, Goldhill, BarbaraandWomar)
are used for the tests. In comparison with the improvemerugiged by these choices, quality losses
are reduced, especially for small compression ratios, lwhie the ones used for Digital Cinema.

To allow the IDWT to process the image in a line-based way, litestream is organized so that
the whole compressed data corresponding to a specific kpegian of the image is contiguous in the
bit-stream. Such @ata ordering schemeorresponds to one of the five progression orders proposed in
the JPEG 2000 Standard.

A last implementation choice aims at achieving some ligigiveoperations in software. These oper-
ations are mainly data handling and are easily implemensaayupointers in C. Headers and markers

(needed by these operations) are therefore not cipherdy:packet bodies are, keeping the decoding
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Fig. 5. Proposed architecture.

process secure.

As can be observed, some options, known by any universal JREXB encoder, must be specified
during the encoding process. Our architecture is unabletode a JPEG 2000 code-stream that has not
been encoded using these options. As this architecturedisated to decode Digital Cinema streams at
the highest output bit-rate, we did not consider it efficimnproduce a universal decoder. The images used
to test our architecture were generated using the OpenJBE®yI[22]. The corresponding command-line

is given in the Appendix.

C. Architecture

Fig. 5 presents the hardware part of our architecture. Edzl Eontains three ADUs reflecting the
parallel mode. The bypass mode is also illustrated by thedsgjfine under each ADU. The Dispatch IN
and OUT blocks are used to dissociate the entropy decodépgfsim the rest of the architecture and to
enable the flexibility mentioned above. When Dispatch INeiegs a new JPEG 2000 code-stream from

the PCI, it chooses one of the free EDUs and connects the ttatarsto it. Dispatch OUT retrieves
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Fig. 6. Scanning order of the coding passes. The code-bkwieiwed as a succession of bit-planes structured in stripes

decompressed data from each EDU and connects it to the tetigioand FIFO. In this way, a maximum
of EDUs are always used simultaneously. ADU, CMU and IDWTckk are explained in more detail

below.

V. CONTEXT MODELING UNIT
A. EBCOT algorithm

In the EBCOT algorithm, each code-block is encoded alongpiitplanes, beginning with the most
significant one. Three coding passes (cabaghificant refinementand cleanup passsuccessively scan
each bit-plane and select the bits to encode. This seleistibased on theignificanceof the coefficients.

A coefficient has an insignificant state at the beginning efdbde-block encoding process, and becomes
significant at a given bit-plane when its value in that bafm is 1 for the first time.

To process a bit-plane, trsgnificance pasgncodes insignificant coefficients with significant neigh-
bors, then theefinement passncodes already significant coefficients and finallydieanup pasgencodes
the remaining coefficients. As shown in Fig. 6, the passesga®the bit-planes in stripes, each consisting
of four rows and spanning the width of the code-block.

For each bit to encode, the coding pass sends to the Aritbr@etiling Unit a pair of data: the value
of the bit and its context. The context of a bit is based on th&ef its neighbors in the bit-plane.

The decoding process is very similar to the encoding. Themifierence is that the CMU only sends
a context to the ADU and waits for the corresponding decodgdént back by the ADU.

In order for each pass to select the bits and calculate iteegtrwe have associated three state variables

with each coefficient of the code-block and two with each bithe bit-planes, as suggested in [23]. The
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Fig. 7. The CMU architecture.
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o’ whose value changes from 0 to 1 when the coefficient is ertdde the first time by the

v corresponding to the value of the coefficient in the bit-plan

n indicating whether the coefficient has already been encadéue bit-plane.

A simplified view of our CMU architecture is presented in Figand is based on that developed by

Andraet al. in [11]. Each pass block is linked to an ADU (described in ®ec¥) and contains one or

two context calculation blocks as well as four registersdtiag the state variables. The state variables

are loaded to the significance pass block from an Internal Rl are transmitted from one pass block

to another, as explained below. The global EDU decoding gamired by the Synchronization Block

which generates control signals for the three passes. Téwddd code-block is progressively sent to an
Output RAM connected to the IDWT FIFOs (described in SectioR).

The Pass Blockdave been designed in such a way that each bit-plane is d¢coueltaneously by
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the three blocks, as enabled by the parallel mode. As ititextr in Fig. 8, thesignificance passs the
first to decode the stripe and update the state variablehhéAsame time, theefinement pasanalyzes
the bits located two columns away, in order to use these edderiables in the context calculation
(which requires the two columns surrounding the decoded.dfige same shifting is applied to the
cleanup passAs described in the lower part of the figure, once a bit has lzemlyzed in a pass (and
decoded if the state variables indicate so), the pass eegistoring the state variables shift to the right
by one bit position. When a stripe column is decoded,digmificance passeceives the state variables
corresponding to the next column from the internal RAM ane state variables move from one pass
register to another. At the output of tieeanup passegisters, ther, y ands’ updated variables are sent
back to the internal RAM, and the andy updated variables are sent to the output RAM. Although the
x variable is sent at each bit-plane to the output, it will catcurately correspond to the coefficient sign
at the last bit-plane. The register sizes depend on the waigbles. For ther variable, the significance
context calculation requires variables from three colurfoefficients 0 to 16 in Fig. 8). The same is
true for they variable used in the sign context calculation and éhevariable used in the refinement
context calculation. The, ¢’ andy registers are thus 17-bit wide. Since only the fousnd variables
from the current stripe are used by the passes, their regiate 4-bit wide. Ther, x ando’ variables
from the last line of the previous stripe (line containingffiwients 4, 10 and 16 in Fig. 8) are stored in
a cyclic LUT register, loaded in the significance pass regssand updated by the cleanup pass. Thanks
to the parallel mode, variables from the next stripe are ma&ded during the decoding. However, they
are present in the registers to enable a generalizationeotdhtext calculation.

In order to improve the decoding performances, the contaldutation in each pass is done in a
pipeline way: the context of coefficientl is calculated when coefficiemtis analyzed.

This register-based architecture offers a significant nmgmeduction because thestate variables do
not need to be stored in the RAM after thieanup passall the bits having already been decoded. This
means that compared to [11], only 75% of the internal RAM isassary. The architecture also reduces
the number of RAM accesses, only one access being necessattyef decoding of 4 bits. The state
machine of thesignificance passs represented in Fig. 9.

The Synchronization Bloclkas two functions. First, it synchronizes tRass Blocksat the end of
each column, allowing each to decode a column at its own rhy®econd, it generates control signals
indicating to the three pass blocks their current positiothe code-block. The signals for teggnificance
passare generated by a single counter and are simply registerettid two other passes. These signals

are used by the three finite-state machines and modify ezgistiues at the code-block borders. For
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Fig. 8. Communication between the state variablegisters of each pass. The other state variables regigierate in the same
way. Grey-shaded boxes represents the bits currently édutyl each pass. White descending arrows are synchronotetiope

made by the three passes at the end of each column. Righihghifterations inside each register are done asynchrgnousl

example, in the first stripe, the state variables of the upp@hbors (coefficients 4, 10 and 16 of Fig. 8)
are not read from the circular register but are set to 0.

An Output RAMprogressively receives the decoded code-block fromdianup passSince the
Entropy Decoding Unit (including the CMU and ADU blocks) lsetslowest component of the decoder
because of the EBCOT algorithm’s complexity, it is essémtizgnsure that this unit can always process
the input data and send the decoded code-blocks to the outpwatder to achieve this, th©utput
RAM has been designed to store two code-blocks at a time. The EDUhus begin to decode a new
code-block while the previous one is still being processgdhle IDWT.

Averaging on all the code-blocks of natural images, the CMkes$ 2.1 clock-cyclésto output one
bit. Table IIl presents the Virtex-Il FPGA resources usegrasynthesis (XST tool) and implementation
(ISE 6.01 tool).

The proposed CMU design contains various optimizationsomgarison with [11], most of them due
to an efficient use of the parallel mode. The register comoaititin system between the three autonomous
Pass Blocks, as well as the Synchronization Block singlentssugenerating control signal for the three
passes, allow significant resource savings. This CMU achite is generic and decodes all sizes of
code-blocks: from small 128 coefficient code-blocks witllyane non-zero bit-plane to 2048 coefficient

code-blocks with all non-zero bit-planes.

2This result does not take into account the ADU decoding time.
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Decode
ignificance,

New stripe:

Init registers

Load next
column

Compute
the first
context

Shift
registers

Fig. 9. Significance pass Finite State Machine. (1) End ofirool reached. (2) End of stripe reached. (3) End of code-block
reached. (4) not(1,2,3). (5) Bit has to be decoded. (6) V@itADU’s answer. (7) Bit decoded is significant.

TABLE 11l

SYNTHESIS RESULTS OF ONECMU IN A XC2V6000-6.

Slices 489 over 33792 (1.4%

Look-Up Tables 729 over 67584 (1.1%
RAM blocks (18kbits) 1 over 144
Clock frequency 202.8 MHz

V. ARITHMETIC DECODING UNIT
A. MQ algorithm

The basic idea of a binary arithmetic coder is to find a ralioneamber between 0 and 1 which
represents the binary sequence to be encoded. This is dorge sigcessive subdivisions of the 1]
interval based on the symbols probability. Fig. 10 showsdiventions used for the MQ-coder.

C' is the starting point of the current interval and also repnés the current rational number used
to encode the binary sequenct.is the size of the current intervad) is the probability of the Least
Probable Symbol{PS) and is used to subdivide the current interval. Accordinghi® symbol to be
encoded §/ PS, i.e. Most Probable Symbol, drPS), the following equations are respectively used:

Aisi=Aix(1-Q) and Cit1=Ci+ 4;%xQ

Aip1 = A +Q and Ciy =G
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MPS
(1-Q
MPS _
(1 - Q) - A\+1
A < LPS
Q
| S —
CH’l
LPS
Q
C —» —

Fig. 10. Successive interval subdivisions in the MQ-codéP$ encoding casel’ is the starting point of the current interval
and also represents the current rational number used talertbe binary sequenc® (vhen encoding the first symbol){ is
the size of the current interval (vhen encoding the first symboljp is the probability of the Least Probable SymbalKsS).

During the coding process, renormalization operationsparéormed in order to keef close to unity.

This leads to the following simplified equations, respesjifor an MPS and an LPS:

Aip1 =4, —Qc and Cip1 =C; + Q. 1)
Aiy1=Q. and Cip1 =G (2

At each step, th&).-value (estimated Q-value) is retrieved from two serialklop tables, using the
context provided by the CMU.
Conversely, the decoding process consists in deciding tchninterval (MPS or LPS) the rational

number provided belongs, as well as progressively expartii@ current interval untilo; 1].

B. ADU architecture

As mentioned above, a drawback of the decoding process isdbéek loop from the ADU to the
CMU. As a consequence, the CMU must wait for the ADU’s ansvedoile going on with the remaining
bits to be decoded. In our architecture, priority has tlh@eebeen given to the highest ADU bit-rate,
at the expense of a slight increase in resources. Thorougllysis of the MQ-algorithm [1] shows that
only four steps are needed to decode one symbol:

1) Load given a context, it retrieves the corresponding probgbiind the MPS-value.

2) Compute during this step, the arithmetic operations are perfornmegded to decide if an/ PSS
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or an LPS must be decoded. They consist in only thi&bitssubtractions:

AQ. = A, — Q. 3
CQe = Ci—Qe (4)
A2Q, = A;—2xQ. )

3) Decide based on the results of equations (3) to (5) and onctrey-out bits of these operations,
the A;,1 andC;; values, together with the decoded bit are deduced. The @ddoitlis returned
to the CMU, which can subsequently decide which context ballsent next. In some cases, the
probability associated with the current context is updated

4) Renormalizeas mentioned aboved has to be kept close to unity. ConsequentlyAjf.; < 0.75,

a renormalization (several left-shift operations) is perfed untilA;; > 0.75. The same amount
of left-shift operations is done o€, to avoid corresponding bits o and C' having different
weights. AsC is actually the coded data, if the number of shifts to be dangreater than the

number of bits left in the buffer, a new byte from the bit-atreis loaded from the memory.

Our ADU architecture is presented in Fig. 11 and detailedwellhere are four main areas, cor-
responding to the four algorithm steps. Figure 12 presdmsfinite-state machine (FSM) used. Five
different states (the four steps + an initialization staitrol the registers and multiplexers.

Theload area contains the RAM storing the probability estimate #whecontext. As each of the three
ADUs located in an EDU (Fig. 5) is dedicated to one of the thwasses, only part of the 19 contexts
is stored in the RAM, depending on the ones used by each phisseXplains the variable width of
input CX (n = 4 for significance and cleanup passess 2 for refinement pass). ThBam M Q-block
(detailed in Fig. 13) behaves in exactly the same way as a&icl&AM-block with an entry for each
context. The only difference lies in the fact that the valssaziated with each of these entries must
be one of the 46 probability values. Those values are staresl ROM inside the block. A speed-up
technique is used to initialize the contexts to their ihi@alues when a new codeword has to be decoded.
Two RAM-blocks are used alternately: when one is used foodig, the other is being initialized. In
this way, the initialization process needs only one clogile (to switch from one RAM to the other)
instead ofnc, wherenc is the number of contexts. This is particularly useful in anchitecture, as the
parallel mode (see Section 1lI-B) implies an initializatieach time a new pass is decoded (rather than

once per code-block with default encoding options).

3As explained in [1], this probability update occurs only ifenormalization is needed.
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Fig. 11. The ADU architecture. Bus widths are indicated leetvbrackets. There are four main areas, correspondingeto th

four algorithm steps toad, compute decide renormalize

ReadyCX=0

ReadyCX=1

ReadyBuf=0
& MSB(A,,1)=0

ReadyBuf=0

ReadyBuf=1
& MSB(A,,1)=0

Fig. 12. The ADU finite-state machine.
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" Addridx (n) 1dx1(6) —»| OUT : Qe(16)
Addrinit1(n) »
InitRAM1 RamiDX1 ‘ OUT : NbShifti(4)
Datalnit1(7) _ 2"x 7
Dataldx1(7, MPS1 AddrP(6
Ratald 7y, P R%ng’sba —»{ OUT : NMPS(6)
IN : Newldx(6)
——»{ OUT : NLPS(6)
IN : NewMPS >
Addrldx2(n 1dx2(6)
Al OUT : SWITCH
IN : Addridx(n) >
[ RamIDX1
N n
Addrlnit2(n) > _ 2"x7 Upsa OUT : MPS
InitRAM2 | Dataldx2(7) |
Datalnit2(7)

Fig. 13. TheRamMQ-block. Bus widths are indicated between brackets. To speeihitialization, two RAM-blocks are

used alternately: when one is used for decoding, the otheriobeing initialized.

Thecomputearea contains the three subtracters needed to perform (8) ito one clock-cycle. Results
are then used in thdecidearea. The number of left-shifts that may have to be done inthermalize
step (VbShift) is computed as follows. Based on equations (1) and (2)ethes two potential values
for A;;+1. In the case of (1), analysis shows tékShi ft will only range from O to 2. In the case of (2),
NbShift ranges from 1 to 15 but depends only @a and can be “hard-coded” in thRam M Q-block.
As we wantNbShift to be ready to be used at the end of the decide step, both @bt&wS hi ft values
are generated, the first very easily computed in¢i& hi ft-block and the second directly retrieved from
the RAM. Then, a single multiplexer selects the correct @aduceA;., has been effectively chosen.

The Buf ferC-block interfaces the input-FIFO storing the bit-streard #re ADU itself. This process,
independent from the main control part, guarantees thatnégmmim of 15 bits is always available at its
output when arenormalize step begins. This is indeed the maximum number of leftshifat might
have to be done and the renormalization can then be perfoimede clock-cycle. It also undoes the
bit-stuffing procedure that was performed during the enupdio avoid a carry propagation.

The whole ADU architecture has been synthesized and impitede Table IV presents the global
resources used. No RAM-blocks were used, as all the memiosate the ADU are implemented with
Look-Up Tables.

We summarize below some noteworthy characteristics, gsitherove the architectures proposed in

[12], [13].
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TABLE IV

SYNTHESIS RESULTS OF THEADU IN A XC2V6000-6.

Slices 498 over 33792 (1.5%
Look-Up Tables 944 over 67584 (1.4%
RAM blocks (18kbits) 0 over 144 (0%)
Clock frequency 140.4 MHz

« The main control state machine consists of only 5 statedr(sa8 in [12]). Furthermore, the CMU
is waiting for the ADU answer during only three of them. THere a symbol may be decoded in
3 clock-cycles. The bypass mode improves this result evere mo

« The compressed data loading is performed in an independece$s, when the CMU is not waiting
for an answer. As a consequence, the renormalization candmited in one clock-cycle.

o To speed up the RAM initialization, which takes place eadfetia new codeword is sent to the
ADU, two RAMs are used alternately.

« A speculative computation of the number of left-shifts isfpemed. Moreover, the most complex

potential value does not need to be computed as it is predsiarthe RAM.

VI. INVERSEDWT
A. DWT basics

In JPEG 2000, the DWT is implemented using a lifting-basdueswe [6]. Compared to a classical
implementation, it reduces the computational and memosy, ellowing in-place computation. The basic
idea of this lifting-based scheme is to first perfornuay wavelet transform, which consists in splitting
odd @) and even £¥) coefficients of the 1D-signal into two sequences. Thencessiveprediction
(Pr(2)) andupdate(Ux(z)) steps are applied on these sequences until wavelet ceatScare obtained.
Fig. 14 illustrates the lifting step. The 2D-transform imply performed by successively applying the
1D-transform in each direction.

In the architecture proposed, only the Gall (5,3) filter bank is implemented with an integer-to-
integer wavelet transform. Quantification blockg;, Qu1, ...) perform smart rounding operations that
ensure a reversible transform (that in turn allows for lesslcapability). In (5,3) transformation, only
one prediction step and one update step are needed to petiermvhole 1D-transformationN = 1)

and the gain factord(; and K> equal to 1. Letz(n) be the spatial coefficient sequence aj{d) the
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Fig. 14. The lifting-based Discrete Wavelet Transform.

wavelet coefficient sequence, the equations used to petfuentransformation are:

z(2n) + z(2n + 2)J

y2n+1) = w(2n+1)—{

2
B y(2n—1)+y(2n—|—1)+2J
y(2n) = z(2n)+ { 1
where 2Ente@ni?) - yEnDivEril) 2 and rounding operations respectively correspondPi¢z),

Ui(z) and @p1,Qu1) blocks. Sequenceg(2n + 1) and y(2n) respectively correspond to high and
low frequencies output in Fig. 14. The inverse transfororatiescribed below is simply obtained using

the reverse system:

2(20) = y(2n) - V@" R CADRE | ©
2n+1) = y@n+1)+ {x(Zn) + 925(271 + 2)J @

B. IDWT architecture

Our proposed solution is based on the combined 5-3 and 9-i &ahitecture detailed in [10]. We
only investigated the 5-3 filter in order to implement an myizied and efficient IDWT level. In addition,
we also developed a complete JPEG 2000 IDWT transformatitm five recomposition levels.

To reconstruct one resolution level, an horizontal tramstgion is first applied, followed by a vertical
one. The horizontal transformation architecture is shawfig. 15.

The first line is recomposed by taking the first line of thé subband and the first line of the
HL subband.LL (HL) wavelet coefficients are the even (odd) samples of the Bu&tormation. The

recomposition of the second line will udelf and HH samples as, respectively, even and odd values.
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-

>>

A

IN : odd

Fig. 15. Horizontal IDWT.

As can be observed, only four adders/subtracters, twoesbjftwo multiplexers and a few registers are
needed to implement (6) and (7). In particular, no multipiieused since all divisions are implemented
with shifters.

This architecture is entirely pipelined: every new dataptedpushes” the data through the pipeline,
toward the two outputs. Commands/1l and sel2 deal with the edge effects and are computed using a
small control part.

The vertical transformation is very similar to the horizardne. The major difference is that neighbors
are needed above and below each coefficient (instead ofridftight neighbors). This implies buffering
two entire lines of the reconstructed level. In Fig. 15, thémiffers replace the two serial registers
preceding each multiplexer. Fig. 16 details the resultingizal IDWT architecture.

As two lines are simultaneously needed for the verticalriltg a solution would be to use two parallel
horizontal IDWT blocks, one for each line. However, thoseckks would be used half the time, due to
the single vertical filter. A better solution is to multipléxe operations of each line in a single horizontal
entity. Therefore, the horizontal calculation processetalkcyclically, a(LL, HL) pair followed by a
(LH, HH) pair. The complete 1-level IDWT is detailed in Fig. 17.

The whole IDWT architecture has already been presentedying=in comparison with Chrysafis, who
presented such an architecture in [9], various optiminatibave been carried out. First, as mentioned

above, the lifting scheme has been adopted for each levedn8ethe blocks’ interconnection has been
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Fig. 16. Vertical IDWT.
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Fig. 17. Complete 1-level IDWT.

carefully studied and simplified. Each IDW®block (@ = 0..4) reconstructs one resolution level and
provides the next block with the reconstructed-coefficients exactly as a FIFO would. Therefore, the
four inputs of each block behave in exactly the same way.dThire pipeline characteristic, present in
each level, has been extended to the whole architecturenk§ht@ the progression order chosen, the
sixteen FIFOs (one per subband) are filled as uniformly asiples As soon as its four input FIFOs
contain data (including the one simulated by the precedimgl), an IDWT-block begins reconstructing

its level. When the pipeline is full, two coefficients of theconstructed image are provided. Therefore,
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TABLE V

SYNTHESIS RESULTS OF THE COMPLETEDWT IN A XC2V6000-6

Slices 3283 over 33792 (9.7%
Look-Up Tables 4830 over 67584 (7.1%
RAM blocks (18kbits) 19 over 144 (13.2%)
Clock frequency 181.1 MHz

the IDWTO-block does not use a additional output buffer and produsesspatial coefficients from two
consecutive lines at each clock-cycle. Finally, the scapes€alability is noteworthy as well. Addition or
removal of IDWT levels is straightforward. Moreover, anyemmediate resolution level is easily made
available at the output. This is of high interest as this Igiraychitecture might therefore be connected
to display devices with different resolutions.

We propose a complete IDWT able to proddde x oo tile images. For our tests, we have chosen an
image height of 512 but it should be noted that there is Mistugo height limit to the images compliant
with the proposed architecture. As the latency of each IPAM®ck is the line length of the level being
reconstructed, the whole pipeline latency(®8 + 28 + 27 + 26 4 25) ~ 210, This latency is 128 times
smaller than thg512 x 512)/2 = 2!7 clock-cycles needed to reconstruct an enfit@ x 512 image.
This small latency enables a line-based image reconginycais only2—é6 of the entire image needs to
be buffered inside the IDWT architecture.

The complete IDWT with 5 different levels of recompositioashalso been synthesized and im-
plemented. Table V presents the global resources used. ifleéean RAM blocks correspond to the
memories required to implement the sixteen different iffi0s. Assuming 12 bit-planes for the wavelet
coefficients, the five IDWT blocks require a total of 3,696 byfesf memory, which corresponds to 924

slice$ using the shift register slice configuration.

VIl. PERFORMANCES

The performance analysis of our architecture is based @ ttriteria: reconstructed image quality, re-
sources consumption and achieved throughput. This asdigsi been performed based on an architecture

with 10 EDUs in parallel.

42 x 512 + 3 x (256 + 128 + 64 + 32)) x (12 + 8) bytes.
%(3,696 x 8) + (16 * 2) slices.
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TABLE VI

SYNTHESIS RESULTS OF THE DECODING SCHEME IN XILINX XC2V6000-6.

Slices 27291 over 33792 (80.8%
Look-Up Tables 46 274 over 67 584 (68.5%
RAM blocks (18kbits) 89 over 144 (61.8%)
CLK1 (EDUs & Dispatch) 116.9 MHz
CLK2 (IDWT) 181.1 MHz

4000 T T

—o— EDU throughput
—*— IDWT throughput

3500~ | —4— 1080p@24, 8-hits 4:4:4
—=— 1080p@24, 8-bits 4:2:2
—W%— 720p@60, 8-bits 4:4:4
3000 - - | —&— 720p@60, 8-hits 4:2:2 . . -
f * ¥

Entire architecture throughput
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1000 - / B
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500 1 1 1 1
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Fig. 18. Bit-rates achieved by the proposed architecturestMommon HDTV formats are reached for compression ratios

between 7 and 16.

The first criterion (achieved quality) has already beenistlith Section IlI-B. It has been shown that
encoding options required by our decoding architecture gasults visually identical to the ones with
default encoding options.

Concerning resources and throughput, Table VI presentsyththesis and routing results in a Xilinx
XC2V6000-6 FPGA. About 6500 slices are still available iistbonfiguration, which would be enough
to add a decryption and watermarking modules, as descnib8edction Ill. Moreover, thanks to our line-
based approach, on1.8% of the RAM resources are used. Further development coufdehsily enable
bigger tiles or code-blocks. The bit-rate achieved by ouhigecture highly depends on the compression

ratio used at the encoding side. As it can be seen on Fig. 18t coonmon HDTYV formats are reached
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COMPARISON OF3 RECENT IMPLEMENTATIONS WITH THE PROPOSED ARCHITECTURE

TABLE VII

Arizona Analog Barco Proposed
Univ. [12] Devices[15] Silex [14] architecture
Technology ASIC 0.18um ASIC FPGA FPGA
XC2V3000-6 | XC2V6000-6
Entropy coders 3 3 8 10
Wavelet filters (5,3)-lossless | (5,3)-lossless| (5,3)-lossless| (5,3) lossy and
used (9,7)-lossy (9,7)-lossy (9,7)-lossy lossless
Max. cblk size 32 x 32 4096 coeff. 32 x 32 2048 coeff.
Max. tile size 128 x 128 2048 x 4096 128 x 128 512 X oo
Memory [Kbits] 310 not provided 1332 1602

25

for compression ratios between 7 and 16.

Table VII compares three other JPEG 2000 hardware impleatiens with our architecture. It shows
that one of the main advantage of our solution is the memoageisCompared to [12] and [14], tiles
4 times wider andvithout height limitationare managed while memory is only increased by a factor of
respectively5.2 and 1.2. The line-based approach proposed in this paper avoids xeynal memory
usage, even with such bigger tiles, and enables a totaliyselecoding scheme. It also reduces drastically
the architecture latency.

Figure 19 presents a throughput comparison with the impheatien from the same technology [14].
Throughputs estimations have been deduced from the Faattfl. As it can be seen and given the
significant difference in resource consumption betweerh lzathitectures, the EDUs modules in the
commercial implementation [14] perform better than ours.tfle contrary, its IDWT module is far less
efficient and limits quickly the throughput achieved. Begiancompression ratio of 20, our architecture
becomes better in terms of ratio (throughput/resourceshs€quently, further research should focus on

EDU resource reduction: a new architecture without any ARigli¢ation is already under development.

VIIl. CONCLUSION

In this paper, we have proposed a hardware JPEG 2000 deawdezdl-time applications such as

Digital Cinema. It has been implemented in VHDL, and synitexs and routed in an FPGA.
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Fig. 19. Throughput comparison. The number of slices isrga® an indication of resources consumption.

Various previous contributions have been joined togethdraptimized to provide a complete, secure,
high performance and flexible decoding scheme.

The system proposed is secure because no external memosgdsamd the data flow is protected
during the whole decoding process.

Thanks to three different levels of parallelization anelimased data processing, high output rates are
achieved. With a compression ratio of 14 (7), the configaragynthesized in the FPGA supports the
1080/24p HDTV format for respectively 8-bit 4:4:4 imagesddadrbit 4:2:2 images. In particular, the
line-based data processing allows the inverse wavelesfvan module to provide very high output rate
with minimum memory and resources constraints.

Finally, the system proposed is highly flexible. In order &iisfy a broad range of constraints and
avoid the problems inherent to multi-chips boards, two & three parallelization levels are easily
customizable. They allow the proposed architecture to finy single FPGA without further development.
This underlines the interest of this kind of technology camnggl to ASICs, in fast-evolving markets such

as video processing.

APPENDIX

ENCODING OPTIONS REQUIRED BY THE PROPOSED ARCHITECTURE

In order to generate images that our architecture is abletodk, following options must be specified

during the encoding process:

« tile size:512 x 512. The tile height is actually not limited to 512 and might beosén bigger.
« code-block size8 x 256. This guarantees that each code-block spans the whole saildxagth.
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« precinct size:l6 x 512 for all resolution levels except the smallest one which mepB x 512.
o switches:reset, restart, causal, bypass. The first three switches enable simultaneous pass pro-
cessing (parallel mode)

« progression order: PCRL. This order groups together padketn the same spatial area.

The OpenJPEG library [22] was used to compress the test snagéh the following command-line
(example withiena and a compression ratio of 16)infageto_j2k -i lena.pgm -o lena.j2k -r 16 -n 6 -t
512,512 -b 8,256 -c [16,512],[16,512],[16,512],[16,51/46,512],[8,512] -p PCRL -M 15
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