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Télédétection

B - 1348 Louvain-la-Neuve
Belgique

JPEG 2000 and Parity Bit Replenishment

for Remote Video Browsing

François-Olivier Devaux
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Abstract

T
his thesis is devoted to the study of a compression and transmission
framework for video. It exploits the JPEG 2000 standard and the

coding with side information principles to enable an efficient interactive
browsing of video sequences.

During the last decade, we have witnessed an explosion of digital visual
information as well as a significant diversification of visualization devices.
In terms of viewing experience, many applications now enable users to in-
teract with the content stored on a distant server. Pausing video sequences
to observe details by zooming and panning or, at the opposite, browsing
low resolutions of high quality HD videos are becoming common tasks. The
video distribution framework envisioned in this thesis targets such devices
and applications.

Based on the conditional replenishment framework, the proposed system
combines two complementary coding methods. The first one is JPEG 2000,
a scalable and very efficient compression algorithm. The second method is
based on the coding with side information paradigm. This technique is
relatively novel in a video context, and has been adapted to the particular
scalable image representation adopted in this work. Interestingly, it has
been improved by integrating an image source model and by exploiting the
temporal correlation inherent to the sequence.

A particularity of this work is the emphasis on the system scalability as
well as on the server complexity. The proposed browsing architecture can
scale to handle large volumes of content and serve a possibly very large num-
ber of heterogeneous users. This is achieved by defining a scheduler that
adapts its decisions to the channel conditions and to user requirements ex-
pressed in terms of computational capabilities and spatio-temporal interest.
This scheduling is carried out in real-time at low computational cost and
in a post-compression way, without re-encoding the sequences.
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Introduction 1
1.1 Motivation

D
uring the last decade, we have witnessed an explosion of digital
visual information. The number of devices acquiring multime-
dia data continues to increase exponentially, with an ever finer
quality [24]. With the price of storage virtually tending to zero

and an increasing part of the worldwide population gaining access to the
Internet, this content can potentially reach an incredible number of users
at anytime and almost anywhere.

At the same time, the variety of visualization devices is very wide: the
same content can be played on PDAs with small tactile screens up to very
large displays of personal desktops. These devices also differ in their stream-
ing capability and computation resources. For example, nowadays, a new
movie is typically first played in digital cinemas with 2K displays1 streamed
through Gigabit networks and decoded on powerful cinema servers, and
ends up a few month later on small Ipod screens, streamed through the
Internet and decoded with limited chips.

In terms of viewing experience, many applications now enable users to
interact with the content. Pausing the video sequence to observe details by
zooming and cropping or, at the opposite, browsing low resolutions of high
quality HD videos are becoming common tasks. Such interactive actions
are particularly essential in a video-surveillance context on which we have
focused in this work. An efficient browsing of these video-surveillance scenes
increases the quantity and quality of information extracted.

This thesis is devoted to the study of compression and transmission

1A 2K resolution corresponds to 2048x1080 pixels. The most recent digital cinemas
are equipped with 4K screens (4096x2160 pixels).
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techniques enabling an efficient browsing of video content. A particularity
of this work is the emphasis on the system scalability as well as on the
server limited complexity. In addition, the proposed framework enables
end-user resources and interest with regard to the displayed scene to be
taken into account in real-time by adapting the streamed content, without
re-encoding the sequences.

1.2 Problem statement and contributions

We consider application scenarios in which a client - typically a hu-
man controller behind a PC or a wireless PDA - accesses pre-encoded con-
tent captured by possibly multiple (overlapping) surveillance cameras, to
figure out what happened in the monitored scene at some earlier time.
A desired browsing interface enables the end-user to randomly select any
spatio-temporal segment of the video(s) at arbitrary resolution so that, in
a typical interactive browsing scenario, the end-user can first survey the
(multiple) video(s) at low temporal and spatial resolution, and thereafter
focus on higher resolution displays of short video segments of interest, or
decide to zoom in on a specific spatial area or object of interest, either in
a particular frame or video segment.

Regarding deployment, we are interested in a browsing architecture that
can scale to handle large volumes of content, captured by several cameras,
on multiple sites and at distinct time instants. Therefore, the content has
to be stored efficiently in a compressed format and the computational load
associated to content storage, access and distribution has to be limited1.

To address the above requirements of scalability and deployment at
large scale, we have decided to build our system on the image represen-
tation defined in the JPEG 2000 compression standard [3]. JPEG 2000
indeed provides a natural solution to support the required access flexibility,
through low complexity manipulation of pre-encoded bitstreams [41][14],
without requiring computationally expensive transcoding -i.e. decompres-
sion followed by compression- operations. In the meantime, we have also
renounced to exploit temporal prediction during compression, in order to
preserve the capability of random temporal access to each individual frame
of the sequence.

1Even in cases for which a given content is only accessed by a few clients, the server
is expected to handle a large number of contents simultaneously, thereby making com-
putational load on the server an important issue.
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To mitigate the penalty induced by a strict INTRA coding structure, we
have introduced an innovative replenishment method based on JPEG 2000
and parity bit coding, and have adapted conditional replenishment princi-
ples to scalable representations and to the specificities of video surveillance
scenes. This adaptation has been achieved at two levels. First, next to the
previously reconstructed frame, the pre-computed estimation of the scene
background has been considered as a potential candidate for reconstruct-
ing the current frame in absence of replenishment information. Secondly,
decisions about the replenishment of JPEG 2000 and parity packets have
been optimized in the RD sense by taking into account potential semantic
information, e.g. defining some knowledge about the regions interesting the
user in the scene. Interestingly, that knowledge is exploited independently
of the compression stage, which means that it can be provided a posteriori,
at transmission time by each individual user. Hence, our system naturally
supports interactive definition of windows of interest to specify the fraction
of a pre-encoded content that (s)he wants to visualize at a given moment
during the streaming.

Finally, the integrated contributions of our work result in a video server
which:

• implements a multi-reference conditional replenishment scheme for
pre-encoded JPEG 2000, and demonstrates the relevance of the ap-
proach in scenarios for which the video sequence is captured with still
cameras, as often encountered in a video surveillance context;

• makes use of an image source model and exploits the temporal cor-
relation in the sequence to improve the correcting capabilities of the
parity-based refresh mechanism;

• promotes adaptive and user-driven access to video content by defin-
ing a scheduler adapting to heterogeneous channel conditions and to
user requirements (in terms of spatio-temporal interest) at low com-
putational cost and in a post-compression way, based on a set of
pre-calculated rate distortion metadata;

• circumvents the drawbacks of closed-loop prediction systems by re-
stricting transmissions to INTRA and parity bit content. This is es-
pecially relevant when addressing heterogeneous clients dealing with
different prediction references in lossy environments;
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• does not aim at competing with state-of-the-art hybrid video com-
pression algorithms [51] [66]. Instead of compression efficiency, our
proposed solution emphasizes the capabilities for adaptation to user
preference, and spatio-temporal random access required for interac-
tive navigation through the individual frames or segments of the video
sequence.

1.3 Outline of the thesis

Besides this introductory chapter, our thesis is divided into five chapters
as follows.

In Chapter 2, we present the state of the art in video coding and justify
the options we have chosen to develop our video sever. In particular, we re-
view the INTRA-based conditional replenishment mechanisms and parity-
based video coding techniques. We also propose an overview of the scalable
coding systems and focus on the image compression standard JPEG 2000.
The remainder of this thesis consists in presenting how parts of these dif-
ferent techniques have been combined in a coherent framework to enable
an efficient remote browsing of video content.

In Chapter 3, the proposed video codec supporting our flexible and
interactive server is presented. We detail the adaptation of the condi-
tional replenishment principle to the scalable representations derived from
JPEG 2000 and parity coding, and explain how an optimal allocation of the
compressed data in a rate-distortion sense can be achieved. At transmis-
sion time, individual user requirements and interests in parts of the content,
like regions of interest, influence the way this rate-allocation process sched-
ules the pre-encoded content. Simulations demonstrate the efficiency and
flexibility of the system.

Chapter 4 further details the generation and decoding of parity bits
based on the theory of coding with side information. Spatial and temporal
correlation are exploited in the wavelet domain and lead to a significant im-
provement of the system performances. Important lessons are drawn about
the exploitation of video source models in parity-based coding paradigms.
In particular, it is shown that a localized prediction error can be more easily
corrected than an error with similar energy that is spread over the whole
image. This learning should certainly drive the design of an ad-hoc motion
compensation engine.
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In Chapter 5, we integrate the conditional replenishment framework
into a server supplying a large number of heterogeneous users with dif-
ferent resources and requirements. We show that simple approximations
can greatly reduce the server complexity when adapting the pre-encoded
content to each user needs and resources.

In the final chapter, we summarize the contributions of our work and
suggest several areas of interest for future research.





State of the art in

video coding 2
An efficient exploitation of the temporal correlation intrinsic to video

sequences is a requirement in order to reduce bandwidth consumption when
streaming video content. Most video coding algorithms rely on closed-loop
prediction to achieve high compression efficiency. This efficiency is coun-
terbalanced by strong dependencies within the compressed content. These
constraints are unacceptable for some specific applications requiring a higher
flexibility in the way they access the compressed content. For this reason,
a large effort has been made in the last decade to alleviate the closed-loop
constraint by multiplying the prediction paths within a single scalable and
embedded bitstream, each path corresponding to a distinct decoding of the
codestream. In this section, we review these advances in scalable video cod-
ing. As an introduction to Chapter 3 and 4 of this thesis, we also present
alternative coding and transmission mechanisms to exploit temporal redun-
dancy while avoiding closed-loop prediction.

2.1 Introduction

I
n this chapter, we present different video coding systems and com-
pare the way they exploit temporal correlation. In particular, we are
interested in the consequences of closed-loop predictions. The basic
principle of coding mechanisms integrating prediction loops consists

in dividing the video sequence into groups of frames, and encoding indepen-
dently the first frame, called INTRA frame. For each one of the following
frames of the group, called INTER frames, the prediction error of a motion
compensated version of the previous frame is recursively encoded, as illus-
trated in Figure 2.1. The dependency between INTRA and INTER frames
is depicted in Figure 2.2. Todays most efficient video coding systems inte-
grate prediction loops which are improved versions of this basic principle
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(e.g. predictions based on several previous or subsequent references, scal-
able multiple-layer structure, ...).

Figure 2.1: Basic principle of closed-loop coding. The prediction error of a
motion compensated version of the previous frame is recursively encoded to
generate INTER frames. The predicted frame is also called reference.

While prediction loops exploit temporal correlation very efficiently, they
present several drawbacks. First, a perfect synchronization is required be-
tween the encoder and the decoder to ensure that they both consider the
same references. In particular, any error in the reference propagates to
all subsequent INTER frames. Second, this tight synchronization prevents
a real-time adaptation of the content to the client resources and needs.
Finally, prediction loops prevent an efficient random access to frames, as
the INTRA reference and all intermediary frames from which the targeted
frame is predicted must be decoded first. Hence, when an access to in-
dividual frames is expected, closed-loop systems are characterized by an
intrinsic latency and a low coding efficiency since several frames must be
transmitted and decoded to output a single frame.

Figure 2.2: Frame dependencies with a basic prediction structure.

The penalty induced by these drawbacks depends on the application at
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hand. In this work, we focus on applications that require a random access
to individual frames, and for which a pre-encoded stream is likely to serve
heterogeneous clients, manipulating distinct references. In this context, we
will evaluate alternative mechanisms to closed-loop predictions to exploit
temporal correlation.

This chapter is structured as follows. We first define scalable coding in
an image and video context. We then present the JPEG 2000 still image
coding standard which offers a flexible and scalable image structure and is
at the root of our proposed video coding framework. Next, we propose an
overview of SVC, the state of the art video coding standard which offers a
high coding efficiency, combined with a rich scalability. Then, we present
the conditional replenishment principles, on which our proposed system is
based. Video coding systems based on conditional replenishment are the
first systems which are not based on closed-loop prediction. We finally
present video coding with side information, a novel video coding paradigm,
and explain how it relaxes the closed loop constraint.

2.2 Scalable image and video coding

Scalable coding refers to the ability to create a single embedded bit-
stream from which several versions of the content can be extracted. In an
image coding context, a scalable codec enables users to extract from the
compressed image lower resolutions, limited spatial zones, lower quality
versions, or a reduced number of components. This is achieved by decod-
ing only to the parts of interest within the compressed data. In a video
context, additional levels of scalability consist in extracting lower temporal
resolutions of the content, and in accessing randomly selected frames from
the video stream without decoding adjacent frames.

The main motivation to offer scalable coding systems is to enable a
unique compressed content to be distributed to clients with different re-
sources and requirements. The content can be adapted to clients processing
power, displays, network capabilities as well as semantic interest in the con-
tent. This adaptation can be achieved in real-time by a server transmitting
only parts of the video bitstream corresponding to the clients ressources.

Scalable video coding has been an active research and standardiza-
tion area for at least 20 years. The international video coding standards
H.262/MPEG-2 Video [31], H.263 [29], and MPEG-4 Visual [28] already in-
cluded several scalability tools, which have however been rarely used mainly
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because of the loss in coding efficiency associated with these scalable modes
and the increased decoder complexity. The recent scalable extension of
H.264/AVC [30] mitigates these drawbacks and is presented in the next
section.

It is worth mentioning that all these video standards follow the same
general closed-loop predictive compression scheme that we now summarize.
Specifically, each picture is partitioned into macroblocks which are either
spatially or temporally predicted based on neighboring macroblocks. The
remaining correlation of the resulting prediction residuals is exploited by
applying a transform such as the DCT followed by quantization and entropy
coding. We will see in Section 2.4 that the closed-loop paradigm severely
constraints the construction and exploitation of scalable codestreams.

2.3 JPEG 2000

Although the context of our work is video, we now present the
JPEG 2000 still image standard. Its flexible image representation struc-
ture will be the core of our system, and deserves a presentation in this
chapter.

In the following, we first give an overview of the main coding steps of
the JPEG 2000 algorithm and then present the various scalable facets of
its image representation. Most parts of the algorithm presented here are
integrated in our coding system. Finally, we give a brief overview of the
fields in which the JPEG 2000 compression is deployed today.

2.3.1 Wavelet domain

According to the JPEG 2000 standard [3], a first Discrete Wavelet
Transform (DWT) is applied on the original image, generating four sub-
bands (LL, HL, LH and HH) containing the vertical and horizontal low
(L) and high (H) frequencies of the original data. The DWT is then ap-
plied recursively on the LL subbands containing the low frequencies of each
resolution, as illustrated in Figure 2.3. The subbands resulting from the
wavelet transform are partitioned into code-blocks that are coded indepen-
dently [3] [41] [16].
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Figure 2.3: JPEG 2000 wavelet subbands and precincts. A succession of
discrete wavelet transforms are applied recursively to the original image.
A precinct (e.g. Precinct A) is a spatial subdivision of a resolution, and
corresponds to the same spatial zones in each subband (e.g. A′ +A′′ +A′′′).

2.3.2 Entropy coding

Each code-block is compressed independently using a context based
adaptive entropy coder. It reduces the amount of data without losing infor-
mation by removing redundancy from the original binary sequence. “En-
tropy”means it achieves this redundancy reduction by using the probability
estimates of the symbols. Adaptability is provided by dynamically updating
these probability estimates during the coding process. And“context-based”
means that the probability estimate of a symbol depends on its neighbor-
hood (its “context”).

Practically, entropy coding consists of the following steps:

• Context Modeling : the code-block data are arranged in order to first
encode the bits that contribute to the largest distortion reduction for
the smallest increase in file size. In JPEG 2000, the Embedded Block
Coding with Optimized Truncation (EBCOT) algorithm [67] has been
adopted to implement this operation. It is based on the observation
that spatially, the value of a bit inside a bit-plane can be estimated
mainly on the value of its neighbors [52].

The EBCOT algorithm scans code-blocks bit-plane after bit-plane in
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order to label the bits according to the value of their neighbors, char-
acterized by their context. These 19 different contexts are computed
based on state variables related to the 8 surrounding coefficients, and
to the processed coefficient itself. The most important state vari-
able is the significance status of a coefficient. A coefficient is said
to switch from non-significant to significant state at the most signifi-
cant bit-plane for which a bit equal to ’1’ is found for this coefficient.
Other variables affecting the context are the type of subband (LL,
HL, LH or HH), the sign of the coefficient, and its “first refinement”
status1.

• Arithmetic Coding : The outputs of the Context Modeling step are
entropy coded using a MQ-coder, which is a derivative of the Q-
coder [48]. According to the provided context, the coder chooses a
probability for the bit to encode, among predetermined probability
values supplied by the JPEG 2000 Standard and stored in a lookup
table (LUT). Using this probability, it encodes the bit and progres-
sively generates code-words, called segments, that will be organized
to form the final code-stream.

Intuitively, it is easy to understand that a context improves the pre-
dictability of encoded binary values. Indeed, in a given bit-plane, if a non-
significant coefficient is surrounded with significant ones, it is more likely
to become significant (i.e. get a ’1’ bit) than if it was surrounded with
non-significant coefficients. Similarly, if a coefficient has become significant
in the previous bit-plane and is surrounded with non-significant coefficients
only, there is a higher probability for the coefficient to lie in the lower half
of the remaining potential values, and therefore for the very first refinement
bit to be a ’0’.

Figure 2.4 depicts the representation of a code-block in bit-planes and
the concept of context.

2.3.3 Quality scalability

As explained before, code-blocks are described sequentially by bit-planes
from most to least significant. This description by bit-planes plays a dual
role in quantization and progressive transmission, by realizing a sequence

1This variable is always equal to ’0’, except at the bit-plane immediately following the
bit-plane where the coefficient became significant, where it is set to ’1’.
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Figure 2.4: Bit-plane representation. The coefficient A which is equal to
6 is represented in binary form (0110) through the four bit-planes. Its MSB
is non-significant and the remaining bits of the coefficient are significant.
Context. The context of bit b is calculated based on the significance value
of its 8 neighbors and on its own significance state.

of successively refined uniform quantizers [60]. The most significant bits
from each coefficient provide a coarse idea of its final value and contribute
therefore to a larger extent to the global distortion reduction than less
significant bits.

Each code-block is coded into an embedded bitstream, i.e. into a
stream that provides a representation that is (close-to-)optimal in the rate-
distortion sense when truncated to any desired length. To achieve rate-
distortion (RD) optimal scalability at the image level, the embedded bit-
stream of each code-block is partitioned into a sequence of increments based
on a set of truncating points that correspond to the various rate-distortion
trade-offs [67] defined by a set of Lagrange multipliers. A Lagrange mul-
tiplier λ translates a cost in bytes in terms of distortion. It defines the
relative importance of rate and distortion. Given λ, the RD optimal trun-
cation of a code-block bitstream is obtained by truncating the embedded
bitstream so as to minimize the Lagrangian cost function

L(λ) = D(R) + λR (2.1)

where D(R) denotes the distortion resulting from the truncation to R
bytes. Different Lagrange multipliers define different rate-distortion trade-
offs, which in turn result in different truncation points.

For each code-block, a decreasing sequence of Lagrange multipliers
{λq}q>0 identifies an ordered set of truncation points that partition the
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code-block bitstream into a sequence of incremental contributions [67]. In-
cremental contributions from the set of image code-blocks are then collected
into so-called quality layers, Qq. The targeted rate-distortion trade-offs dur-
ing the truncation are the same for all the code-blocks. Consequently, for
any quality layer index l, the contributions provided by layers Q1 through
Ql constitute a rate-distortion optimal representation of the entire image.
It thus provides at the image level distortion scalability, also called quality
scalability.

2.3.4 Spatial and resolution scalability

Although they are coded independently, code-blocks are not identified
explicitly within a JPEG 2000 codestream. Instead, the code-blocks as-
sociated to a given resolution are grouped into precincts, based on their
spatial location [3, 15]. Hence, a precinct corresponds to the parts of the
JPEG 2000 codestream that are specific to a given resolution and spatial
location. The concept of precinct is illustrated in Figure 2.3. Precincts sizes
can vary for each resolution, but a certain coherence in the sizes throughout
the resolutions is welcome to ensure a true spatial scalability. Typically, a
spatial zone of size (w, h) can be efficiently extracted from a codestream
when the precincts have a size of (w∗2−r, h∗2−r) where r correspond to the
resolution number as illustrated in Figure 2.3 (r = 3 for the low resolution).

As JPEG 2000 packets are generated independently for each precinct,
individual decisions can be taken for each precinct, offering the spatial and
resolution scalability.

2.3.5 Codestream structure

As a consequence of the above-defined quality layering, a precinct can
also be viewed as a hierarchy of packets, each packet collecting the parts of
the codestream that correspond to a given quality among all code-blocks
matching the precinct resolution and position. Hence, packets are the basic
access unit in the JPEG 2000 codestream.

Besides packets and their associated packet header, JPEG 2000 code-
streams contain main headers specifying the image characteristics and the
JPEG 2000 parameters used, as depicted in Figure 2.5.
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Figure 2.5: The JPEG 2000 codestream contains main headers followed by
a succession of packets composed of a Packet Header (PH) and Packet Data
(PData).

2.3.6 JPEG 2000 deployment

Nowadays, the JPEG 2000 standard is widely used in professional imag-
ing fields which require high efficiency, high bit-depth and scalability [34].
The main applications using JPEG 2000 are digital cinema, video surveil-
lance, geographic imaging, archiving and medical imaging.

The success of JPEG 2000 for video applications can be explained by
the fact that at high bitrates1, its compression efficiency is similar to that of
H.264/AVC. Moreover, its high temporal and spatial scalability as well as its
robustness to transmission errors are other features that make JPEG 2000
a good candidate for high quality video transmissions.

Although JPEG 2000 has been successfully deployed in professional
applications, its adoption in consumer applications is far from being con-
vincing. Its high complexity seems to be the main reason preventing such
adoption.

2.4 SVC

SVC is the scalable extension of the H.264/AVC standard [30]. The
objective of the SVC standardization [59] has been to enable the encod-
ing of a high-quality video bitstream that contains one or more subset bit
streams that can themselves be decoded with a complexity and reconstruc-
tion quality similar to that achieved using the H.264/AVC design with the
same quantity of data as in the subset bitstream.

Regarding spatial scalability, SVC follows the conventional approach of
multi-layer coding used in previous H.26x and MPEG standards. Figure 2.6
depicts a multi-layer structure with two layers. The lower layer, called base

1Depending on the content, it is considered that JPEG 2000 efficiency is comparable
to that of H.264/AVC at bitrates above 100-150 Mbps for 2K (2048x1080 pixels) video
sequences.
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Figure 2.6: Multi-layer structure adopted by the SVC standard, which en-
ables spatial and quality scalability. The layer at the bottom of the figure
corresponds to the base layer, which can be refined by the top enhancement
layer. In this configuration, the enhancement layer increases the resolution
and frame rate of the base layer. This figure has been published in the SVC
overview paper by Wiegand et al. [59] and is reproduced here with the kind
permission of the authors.

layer, corresponds to the low spatial resolution and the second layer, called
enhancement layer, corresponds to a higher resolution. Quality scalability
can be considered as a special case of spatial scalability for which identical
picture sizes for base and enhancement layers are considered. In this case,
the base layer contains a quantized version of the coefficients which are
refined by the enhancement layer.

Figure 2.7: SVC temporal scalability. Example of hierarchical prediction
structure enabling temporal scalability. Four temporal resolutions (T0...T3)
can be extracted with this structure. This figure has been published in the
SVC overview paper by Wiegand et al. [59] and is reproduced here with the
kind permission of the authors.
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SVC provides temporal scalability by partitioning the bitstream into a
temporal base layer and one or more temporal enhancement layers. Fig-
ure 2.7 gives an example of SVC hierarchical prediction structure between
temporal layers. At the bottom of the figure, the encoding order (0...16)
is first specified followed by the layer number (T0...T3 where T0 refers to
the temporal base layer). A low frame-rate version of the sequence can be
obtained by decoding only the T0 frames. Spatial and temporal scalability
can be combined by reducing the number of lower layer pictures, as de-
picted in Figure 2.6, where the base layer corresponds to a low frame-rate
and resolution of the sequence.

SVC provides a high flexibility in its hierarchical prediction structure.
For example, if applications require temporal scalability with low latency,
the structure depicted in Figure 2.8 in which the prediction is only based
on previous frames can be adopted instead of the structure of Figure 2.7.
Such low latency structure is penalized by a lower coding efficiency due to
a reduced prediction horizon.

Figure 2.8: Example of hierarchical prediction structure offering tempo-
ral scalability and low latency. This figure has been published in the SVC
overview paper by Wiegand et al. [59] and is reproduced here with the kind
permission of the authors.

Although temporal scalability is well developed in SVC, an efficient ac-
cess to random frames is not possible without highly reducing the compres-
sion performances. The same conclusion holds regarding spatial random
access. This is due to the dependencies inherently associated to closed-
loop prediction mechanisms. In this thesis, we investigate the possibility to
achieve good coding efficiency without relying on the closed-loop prediction
coding paradigm. Therefore, we investigate the conditional replenishment
and parity-based refreshment mechanisms, shortly reviewed in the two fol-
lowing sections.
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2.5 Conditional replenishment

Conditional replenishment has been introduced by Mounts [49] in 1969,
in the early years of digital video coding. The basic concept is illustrated
in Figure 2.9. Frames are divided in spatial zones which are encoded inde-
pendently, and only the parts of the current frame that differ significantly
from a reference maintained at the receiver are transmitted.

Compared with pixel-to-pixel 1-D DPCM, the most popular coding
technique at the time, conditional replenishment technique is more effi-
cient due to its ability to exploit inter-frame redundancy on blocks. About
ten years later, in order to improve compression performances, conditional
replenishment has been combined with an intraframe transform, using a
two-dimensional variable rate Hadamard transform coder [33].

More recently, conditional replenishment has been exploited in several
papers attracted by its INTRA coding scheme. For example, [46] and [47]
integrate the conditional replenishment paradigm where it is used as a sim-
ple video coding method offering good flexibility for multicast distribution.

In this work, we have extended the original conditional replenishment
framework by increasing the number of references candidates to approxi-
mate the spatial zones to transmit. Moreover, different coding techniques
are considered to replenish these zones and the rate-distortion optimal tech-
nique is selected on the fly among a pre-computed set of replenishment
option (see Section 3.4). This is illustrated in Figure 2.10. Depending on
the content to transmit, the previous replenishment decisions and the avail-
able bit-budget, the system will decide to use a reference, to transmit fresh
replenishment data, in a rate-distortion optimal way.

As the decoding of fresh data at the client side is achieved indepen-
dently from the previously decoded frames, conditional replenishment can
be considered as an open-loop coding mechanism. As long as replenishment
decisions can be adapted on the fly, based on individual user requirements,
random access to individual frames is possible and encoder1 and decoder
desynchronization has a much smaller impact on the system performances
than for algorithms based on closed-loop prediction.

1In that case, the reference is simply unavailable and only fresh information is used
for replenishment.



2.5 Conditional replenishment 19

Figure 2.9: In the conditional replenishment framework, frames to transmit
are divided in spatial zones which are either approximated by a reference
available at the decoder, or replenished by fresh data. In this example,
the reference will probably be used to approximate the first zone, as they
are similar. In the second case, fresh data will probably be transmitted
to replenish the second zone, since it significantly differs from the second
reference.
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Figure 2.10: Conditional replenishment with multiple references and re-
plenishment techniques. In this example, two references and two coding
techniques are available. A cost in bytes and a measure of the distortion is
associated to each replenishment option. Two quality layers are generated
by each coding technique, each low layer resulting in a lower cost and lower
quality than the corresponding high layer. Depending on the available bit-
budget, the system will approximate the zone to transmit with a reference
or decide to replenish the zone by transmitting compressed data generated
by one of the coding techniques, at a given quality level.
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2.6 Video coding with side information

In this section, we explain how the principles of coding with side infor-
mation have been recently extended to video coding. It results in a codec
that shifts the complexity associated with efficient temporal redundancy
exploitation from the encoder to the decoder. More importantly, we will
see that it also provides a solution to relax the synchronization constraint
between the encoder and decoder, thereby alleviating the main drawback
of strict closed-loop prediction systems.

Video coding with side information is based on the Slepian-Wolf the-
orem [63] published in 1973. Let us consider two statistically dependent
signals X and Y respectively characterized by a transmission rate of RX

and RY . The minimum lossless rate at which a signal X can be transmitted
is the signal entropy H(X). By encoding both signals X and Y together,
it is possible to reach a minimum lossless transmission rate of H(X, Y ),
their joint entropy. Slepian and Wolf have shown that the same asymp-
totic performance is also achievable when the signals X and Y are encoded
separately, as long as the two coded streams are decoded jointly and the
following conditions are met [63]:

RX ≥ H(X|Y ) (2.2)

RY ≥ H(Y |X) (2.3)

RX + RY ≥ H(X, Y ) (2.4)

Figure 2.11 illustrates graphically these conditions. A similar result
holds in the case of lossy coding and has been demonstrated in 1976 by
Wyner and Ziv [68].

Video coding with side information focuses on one instance of the
Slepian-Wolf and Wyner-Ziv theorems in which Y is coded losslessly at
rate H(Y ). In this case, it results from the theorem that X can be coded
at rate H(X|Y ), and recovered at the receiver with vanishing error prob-
ability. In this video context, Y is considered as a reference frame stored
at the client side and X the frame to transmit. The reference frame Y
is usually the last decoded frame and is considered as a side information.
The outcome of the Slepian-Wolf theorem in this context is obvious: with
a sufficient knowledge of the correlation between X and Y , the frame X
can be transmitted at a much lower rate, thanks to the exploitation by the
decoder of the side information Y .
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Figure 2.11: Considering two correlated signals X and Y encoded indepen-
dently, the Slepian-Wolf theorem defines the admissible rate region (shaded
region below) for which a joint decoding of these signals is possible.

We learn from the analysis of the conditional entropy H(X|Y ) =
H(X) − I(X; Y ) that two factors enable to decrease the rate at which
we can transmit X:

- I(X; Y ), the mutual information between X and Y . This value will
be high if X can be efficiently predicted from Y . This can be done
by exploiting the temporal correlation between the reference and the
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image to transmit.

- H(X), the entropy of X. In practice, the frame X is encoded based
on codewords that are shorter than the frame size. Encoding those
codewords independently most often result in a significant increase
of entropy, compared to H(X). Hence, it is important to exploit the
correlation between the codewords of X so as to maintain the entropy
of the actual codewords close to the initial frame entropy H(X)1.

The proofs of the Slepian-Wolf and Wyner-Ziv theorems are asymp-
totical and non-constructive, and more than 30 years have passed before
the first practical implementation of the theorem in a video coding context
saw the light. In 2002, different ways of implementing such coding systems
have been proposed [5, 56]. In these frameworks, the side information Y is
considered as a noisy version of X and techniques coming from the conven-
tional channel coding field are used to correct the side information. At the
encoder, parity bits typically generated with Turbo Codes or LDPC Codes
are calculated for X and transmitted to the decoder where they are used to
correct Y . The correlation between X and Y is often associated to a Vir-
tual Channel, since the parity bits aim at correcting the errors introduced
by this channel through which X is sent and Y is received. This process is
depicted in Figure 2.12. Practically, the parity bits are computed based on
the binary representation of the image coefficients of the frame to transmit,
as depicted in Figure 2.13.

Throughout the years, the video coding system with side information
approach has been improved in several ways, e.g. by adding a DCT trans-
form to the encoding process [6], at the expense of an increased coding
complexity. Beside low encoder complexity, video coding with side infor-
mation has also been shown to be more robust to transmission errors [57].

As explained in the introduction chapter, our replenishment system
makes use of parity bits to correct a reference considered as a side in-
formation. Parity bits are introduced to relax the closed-loop prediction
constraint. Indeed, although a reference is exploited by the parity bits at
the decoder, the decoding process fundamentally relies on statistical distri-
bution inferred from the reference, and not on the reference itself. Specifi-
cally, parity bits complete the information provided by those distributions.
Hence, the system is robust to some modifications of the reference.

1In our work, this is achieved by representing X through spatially localized subband
samples and by exploiting the frequency and spatial correlation between those samples.
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Figure 2.12: Video coding system with side information. Parity bits are
generated at the encoder based on the frame to transmit. With these parity
bits, the decoder corrects the side information, which is usually the previous
decoded frame, and generates the reconstructed frame.

The main difference with previous parity-based video coding systems
lies in the fact that coding with side information is combined with alter-
native open-loop coding options in a RD optimal way. Hence, we do not
try to reduce the encoder complexity (at the cost of higher decoding com-
plexity), but rather investigate whether parity bits can improve traditional
the conditional replenishment methods which consist in transmitting fresh
data or using the available reference.
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Figure 2.13: Practical method to compute the parity bits, illustrated in an
encoding, transmission and decoding scheme. The coefficients of the frame
to transmit are represented in their binary form. The parity bits are then
computed based on this sequence of bits using channel codes like LDPC or
Turbo Codes. At the decoder side, the binary representation of the reference
frame is corrected with the help of the received parity bits, generating the
decoded frame.
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2.7 Proposed Framework

The video system proposed in this work and depicted in Figure 2.14 in-
tegrates JPEG 2000 and parity coding within the conditional replenishment
framework.

Figure 2.14: Proposed replenishment methods. Given an image segment
to transmit, the system recommends the client (1) to use the corresponding
segment in the previously reconstructed frame considered as the reference,
(2) to correct this reference using parity bits or (3) to refresh this reference
by decoding the transmitted JPEG 2000 packet.

As we will see further on in this work (Section 3.7), these two coding
methods are complementary. JPEG 2000 is more efficient to replenish zones
which significantly differ from the reference while parity bits are useful in
intermediary situations in which the differences with the reference are not
significant. This is illustrated in Figure 2.15.

The replenishment framework is presented in details in Chapter 3.
Chapter 4 is devoted to the concept of parity based replenishment and fi-
nally, Chapter 5 presents how the proposed framework can be implemented
in a low complexity scalable video server.
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Figure 2.15: The proposed conditional replenishment framework integrates
two complementary coding methods. The choice between these methods de-
pends on the magnitude of the differences between the zone to transmit and
the available reference. It appears in Chapter 4 that with small differences,
the transmission of parity bits is the best solution in a rate-distortion opti-
mal framework. With higher differences, JPEG 2000 is the most efficient
coding method.

2.8 Conclusion

In this chapter, we have first presented the JPEG 2000 standard which
offers a high scalability and compression efficiency for still images. Then, we
have proposed an overview of three video coding techniques which differ in
the way they exploit the temporal prediction. SVC, the most efficient solu-
tion in terms of compression performances, is based on a closed-loop predic-
tion which requires a high constraint on encoder-decoder synchronization.
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Video coding with side information relaxes this constraint by transmitting
parity bit information, which rely on coherent reference statistics rather
than on deterministic reference values. Finally, in the conventional condi-
tional replenishment mechanism, the decoding of received INTRA packets
is independent of the reference, opening the prediction loop and thereby re-
ducing the encoder-decoder synchronization constraint. In practice, those
INTRA packets are encoded based on the JPEG 2000 standard, which offers
a high scalability and compression efficiency for still images.

Figure 2.16: Summary of the prediction loop models presented in this chap-
ter. Compared to open loop, closed loop exploits the sequence temporal re-
dundancy but requires a tight synchronization between encoder and decoder,
thereby preventing an efficient random access to frames and increasing the
sensitiveness to transmission errors. The proposed system is character-
ized by a partially closed-loop, which relaxes the synchronization constraint,
offers an INTRA access to the compressed content while exploiting the se-
quence temporal correlation to improve the coding efficiency.

Chapter 3 and 4 present our replenishment framework. They respec-
tively integrate INTRA and parity based refreshment mechanisms to offer a
highly scalable video coding solution that avoids closed-loop prediction, as
depicted in Figure 2.16, while exploiting the sequence temporal correlation.
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The relaxation of the closed-loop constraint permits to serve heterogeneous
clients based on appropriate scheduling of pre-encoded sets of parity and
JPEG 2000 packets. This flexibility is illustrated in Chapter 5.
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Most parts of this chapter have been published in [20, 21].

This chapter presents the core architecture of our conditional replenish-
ment system. Its main motivations, which are scalability and user-driven
access to video content, are presented through a comparison of conventional
codecs in several transmission scenarios. This comparison demonstrates
that the replenishment framework offers good performance to serve very
heterogeneous clients with a single pre-encoded content.

The proposed replenishment mechanism integrates two refreshment
methods, JPEG 2000 and parity-bit coding, and can handle multiple refer-
ences. To schedule these replenishment options, an optimal rate-distortion
allocation process takes into account network conditions and individual user
preferences about regions of interest within the browsed content. Based
on pre-computed rate-distortion values and low complexity operations, this
adaptation can be achieved in real-time, during the transmission to multiple
heterogeneous users.

3.1 Introduction

O
ur work targets applications requiring a highly scalable access
to stored video sequences. Users logging to the system are ex-
pected to have very different profiles, resources and interests in
the content. They are connected with asynchronous clients to a
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unicast network. A scalable compression technique is envisioned to avoid
multiple versions of the same content and reduce memory requirements at
the server. Common actions on the potentially high resolution video se-
quences are zooming, cropping and extracting low-resolution versions of
both consecutive or individual frames. Hence, scalability in resolution,
quality and spatial access is required, as well as random access capabili-
ties to individual frames. In order to reduce bandwidth requirements, an
efficient compression of the sequences is also necessary. To answer both
requirements of scalability and compression, we have chosen to encode the
sequences with the JPEG 2000 compression algorithm which provides a fine
grained spatial and temporal scalability.

As temporal redundancy is not exploited due to the INTRA na-
ture of JPEG 2000 video compression, the system performances are sig-
nificantly penalized compared to INTER compression schemes, such as
MPEG [9, 44, 64]. In order to circumvent this drawback, we have adapted
conditional replenishment principles to the specificities of JPEG 2000 and
have introduced a background estimate as an alternative replenishment op-
tion. This has been shown to be particularly useful in video-surveillance
scenarios dealing with still cameras. To further improve the performance
of the system, a new replenishment method based on the parity correction
of the side information available at the client side has been proposed. In
Chapter 5, this parity-based solution is also shown to be robust to reason-
able desynchronization between encoder and decoder, thereby mitigating
the main drawback of closed-loop video codecs when addressing multiple
heterogeneous users and error-prone channels.

In a conditional replenishment framework, each frame to transmit is
divided into several zones which are replenished independently. In our
work, these zones correspond to blocks of wavelet coefficients and can be
updated in three ways. First, the client can replenish the zone based on a
reference frame, which typically corresponds to the last decoded frame or to
a background estimate. The second solution consists in transmitting parity
bits to correct the reference at the client side. Finally, the third solution
consists in the transmission of a JPEG 2000 packet to fill in the zone with
fresh information.

Besides, the proposed framework enables the rate-distortion allocation
process to take into account individual user preferences about regions of
interest within the browsed content. This knowledge is exploited indepen-
dently of the compression stage, which means that it can be provided a
posteriori, at transmission time, by each individual user. In a sense, this
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semantic adaptation of the compressed content can be considered as an
additional dimension of the notion of scalability.

Our work presents similarities with [12] which also focuses on a cod-
ing framework able to handle uncertainty on the prediction status at the
decoder. However, our work brings two major contributions compared to
existing research. First, our framework offers an extremely rich scalability
to the user. Second, we propose an alternative to the transmission of par-
ity bits by offering JPEG 2000 replenishments, which significantly improves
the system performances (see Section 3.7.1).

In the remainder of the chapter, we motivate our work in Section 3.2,
through a comparison of several video codecs in four typical browsing sce-
narios. The wavelet image representation offering the desired high scalabil-
ity and the associated distortion metrics considered in this work are pre-
sented in Section 3.3. The scheduling strategy enabling a rate-distortion
optimal replenishment of visualized content is presented in Section 3.4.
Section 3.5 and 3.6 respectively present the background estimation module
and the global overview of the system architecture. Its performances are
presented and discussed in Section 3.7. Finally, Section 3.8 concludes this
chapter.

3.2 Motivation: Remote interactive browsing in

a surveillance context

In order to motivate the use of JPEG 2000 for storing and disseminating
surveillance video content, it is interesting to consider a typical interactive
video browsing scenario and to compare the channel and computational re-
sources required when accessing remotely pre-recorded content based either
on hybrid (INTER) or JPEG 2000 (INTRA) compression formats.

In the envisioned scenario, a graphical user interface (GUI) enables the
human controller to visualize the chronology of recorded - and possibly pre-
analyzed - events through a timeline of low-resolution key frames (scenario
1). The user can then select some time segments of the video to display
at higher resolution (scenario 2). (S)he can also interactively select and
further zoom in on some areas of interest, in a particular video segment
(scenario 3) or frame (scenario 4) of the displayed scene.

Table 3.1 considers a content captured at 15 fps with a still 2 Mpixels
camera and reviews the four access scenarios involved in the browsing ses-
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Scenario Encoded signal Displayed fraction
resolution of initial image

1 Time-line of 192 × 144 1/1
very-low-resolution frames

2 Low-resolution video segment 384 × 288 1/1

3 Zoom in (spatially) 768 × 566 1/4
random video segment

4 Zoom+ in (spatio-temporally) 1536 × 1132 1/16
random frame segment

Table 3.1: Content access scenarios definition. Content has been captured
at 15 fps, with a 2 Mpixels camera.

sion described above. The scenarios differentiate themselves by the spatial
resolution at which they access the content, and by the particular duration
of the video segment they actually access. In particular, scenario 1 envi-
sions the display of a chronological time-line of very low resolution frames.
Scenario 2 considers the display of a video segment at low resolution. Sce-
nario 3 considers a cropped and subsampled version of the video, while
scenario 4 considers the access to a 384x288 window in a randomly selected
frame of the original video sequence.

Scenario J2K JPRB AVC AVC SVC AVC FMO
(I+14P) (All I) (I+14P)

1 (Frames: kbits/sample) 24 24 20 20 20 20

2 (Video: kbits/sec) 1020 189 78 840 93 78

3 (Video: kbits/sec) 702 148 215 2190 251 101

4 (Frames: kbits/sample) 32 32 494 415 537 57

Table 3.2: Average bandwidth consumption for each access scenario and for
distinct encoding schemes, with a PSNR of 35 dB. For the J2K and the
proposed JPRB methods, a single fine-grained codestream is generated for
the four scenarios and could be used to meet other rate constraints. SVC
and AVC streams are generated to target the four pre-defined scenarios,
and different versions of the AVC stream are generated for each scenario
while SVC only requires a single stream. As the first and last scenarios are
related to the transmission of arbitrary frames, the bandwidth consumption
is measured in kbits/frame. For the other scenarios, kbits/sec measure the
required bitrate.
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For each scenario, Table 3.2 compares the average bitrate required to
access a typical surveillance content based on four distinct codecs. J2K
(column 1) encodes and decodes the video images based on the JPEG 2000
algorithm. JPRB (JPEG 2000 and Parity Replenishment with Background
- column 2) refers to the original solution described and validated along this
chapter. In short, it relies on both JPEG 2000 and parity-bit packets and
implements multiple-reference and RD optimized conditional replenishment
mechanisms to reduce the bandwidth consumption when accessing video
segments characterized by stationary backgrounds. The two next solutions
build on the H.264/AVC standard, and encode one INTRA frame every
second (column 3) or all frames in INTRA (column 4). For both AVC
solutions, four distinct streams are generated, corresponding to the four
spatial resolutions considered by the scenarios in Table 3.1. The two last
solutions respectively built on SVC and AVC FMO are detailed below. For
each coding scheme and each spatial resolution, the encoding parameters
have been tuned to reach an approximate PSNR of 35 dB, offering an
equitable visual quality for all scenarios.

In Table 3.2, bandwidth is defined in kbits/sample or kbits/sec depend-
ing on whether the scenario considers the access to an individual frame or
to a video segment lasting several seconds. As AVC is not supposed to
provide spatio-temporal random access capabilities, we assume that entire
frames have to be decoded to access the frame/video segment of interest in
scenarios 3 and 4. Moreover, partial GOPs have to be decoded to access a
single and randomly selected frame with AVC I+14P in scenario 4. Hence,
depending on the position of the frame to access in the GOP, a number
of P frames have to be decoded in addition to the first Intra frame of the
GOP. This explains why the cost to access a sample in scenario 4 is higher
for AVC I+14P than for AVC I.

A careful analysis of Table 3.2 reveals that the INTRA nature of
JPEG 2000 strongly penalizes J2K compared to AVC (I+14P) when video
segments have to be transmitted. It also reveals that J2K provides an at-
tractive solution when random spatial and/or temporal access is desired
(scenarios 1 and 3) or when a single frame has to be displayed (scenario
1 and 4). The lack of spatio(-temporal) random access capabilities sig-
nificantly penalizes AVC-based solutions compared to J2K and JPRB so-
lutions in scenarios 3 and 4. Interestingly, we observe that our proposed
JPRB solution preserves the advantages of J2K, while smoothing out its
main drawback. Specifically, JPRB appears to be the only solution capable
of dealing with all scenarios with a bandwidth of 200 kbps and a latency
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smaller than one second for scenario 4. This fact definitely demonstrates
the relevance of our study. A summary of this comparison is proposed in
Table 3.3.

Codec Compression efficiency Scalability

J2K Low High

Proposed JPRB High High

AVC (I + 14 P) High Low

AVC (All I) Low Medium

Table 3.3: Summary of codecs comparison in terms of compression effi-
ciency and scalability for the four discussed scenarios.

Here, it is worth noting that our system does not implement any motion
compensation algorithm. Hence, it is dedicated to scenarios characterized
by a stationary background, as encountered in video-surveillance context.
The purpose of the thesis was to validate the parity-based replenishment
framework, and the extension to any kind of moving images should be
considered as part of future work1.

Before moving to the actual description of our replenishment solution,
it is worth making two comments about AVC-based video coding schemes.

First, the scalable extension of MPEG-4 AVC, namely SVC [50] which
was presented in Section 2.4, enables the encoding of a high-quality video
bitstream that contains one or more subset bitstreams that can themselves
be decoded with a complexity and reconstruction quality similar to that
achieved using MPEG-4 AVC with the same amount of data as in the
subset bitstream. Hence, SVC prevents the multiplication of streams, but
does not fundamentally affect the conclusions drawn from Table 3.2. This
is illustrated by the column 5 (SVC) in Table 3.2. There we present a
SVC solution for which the first resolution has been encoded based on a I
+ 14 P GOP structure. For the second and third resolutions, frames are
predicted based on the highest lower resolution and the previous frame.
To improve random access capabilities, the last and finest resolution only
exploits the lower resolution as a reference (and not the previous frame).
We observe in Table 3.2 that SVC achieves about the same performance as
the four versions envisioned for AVC I + 14P. This is not surprising since
SVC encounters some (minor) penalty when embedding the four versions

1We will see in Chapter 4 that the specificities of the coding system justify a careful
and dedicated design of the motion compensation engine.
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in a single bitstream.

Secondly, it is possible to exploit the flexible macroblock ordering con-
cept of MPEG-4 AVC to define a grid of block-shaped slices that can be
accessed independently, thereby improving the spatially random access ca-
pabilities of AVC, at the expense of some coding efficiency1. The last
column in Table 3.2 presents the bandwidth requirements corresponding
to the four envisioned scenarios when the AVC I+14P codec considers in-
dependent slices of 64 × 64 pixels. We conclude that, for a given targeted
quality or bit budget, results equivalent or even slightly better than the one
obtained with J2K could be obtained with MPEG-4 AVC or SVC standards
for the fourth scenario, by encoding high resolution frames in INTRA (to
allow for random temporal access) and based on a set of independent slices.
However, in such scenario, JPEG 2000-based solutions still remain attrac-
tive due to their inherent fine grained embedded nature. With JPEG 2000,
there is no need to work with sophisticated decoder architectures, able to
handle a discrete set of (embedded) versions of the same content, encoded
at distinct quality and resolution levels. With JPEG 2000, the client simply
handles and decodes conventional JPEG 2000 packets to browse arbitrary
portions of the content in a progressive and fine grained manner, both in
quality and resolution. Such progressivity is especially desired when serv-
ing heterogeneous terminals, for which transmission resources and interest
in the scene are defined by each individual user at transmission time.

Hence, the core of this chapter mainly consists in explaining and demon-
strating how dedicated conditional replenishment mechanisms efficiently
preserve the fine grained flexible nature of JPEG 2000 image representa-
tion, to adapt streamed content to individual user needs while saving some
bit budget, when serving surveillance video segments, thereby reaching the
performance presented in the JPRB column of Table 3.2.

3.3 Image representation and distortion metrics

for JPEG 2000 compliant replenishment

This section explains how the adoption of the JPEG 2000 image rep-
resentation, combined with the proposed replenishment mechanisms, offers

1For example, [45] considers a low resolution base layer encoded with motion compen-
sation, and a high resolution enhancement layer encoded in a set of independent slices
that are only predicted from the base layer.
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temporal, spatial, quality and resolution scalability, as well as direct inte-
gration of user preferences at transmission time.

3.3.1 Image representation

The JPEG 2000 standard [3], which has been presented in Section 2.3,
describes images in terms of their discrete wavelet coefficients. The zones
considered for conditional replenishment have to coincide to precincts1 so
that the replenishment by fresh data simply corresponds to the selection
and transmission of appropriate JPEG 2000 packets.

The JPEG 2000 subdivision of wavelets resolutions into precincts also
conditions the generation of parity bits. Specifically, each parity packet
contains the parity bits correcting the precinct coefficients at a given quan-
tization level defined for each code-block. In this work, the parity quan-
tization levels of each code-block have been set to the same value as the
JPEG 2000 quantization levels for simplicity2.

The way the reference is corrected with the parity bits and the way
these parity bits are generated is out of the scope of this chapter and will
be detailed in Chapter 4. At this point, the only thing we need to know
is that parity bits offer a set of alternative rate-distortion trade-offs for the
zone to replenish.

In summary, the wavelet transform and the independent coding of
precincts support the spatial and resolution scalability of our system. The
bit-plane description of coefficients combined with a layering approach of-
fers the quality scalability. Figure 3.1 illustrates these three scalabilities.

In addition to these scalabilities, the proposed video system offers tem-
poral scalability and a random access to the frames, since the sequences are
encoded in INTRA with the JPEG 2000 format.

3.3.2 Distortion metrics

In our work, the distortion metric is computed based on the Square Er-
ror (SE) of wavelet coefficients, and approximates the reconstructed image

1As explained in Section 2.3, precincts are spatial subdivisions of the wavelet resolu-
tions defined by the JPEG 2000 standard.

2Since these quantization levels have been calculated by minimizing the Lagrangian
cost function L(λ) defined in Equation 2.1 (page 13) using the distortion and rate issued
from the JPEG 2000 coding and not the parity coding, the parity truncation points are
not necessarily RD optimal like the JPEG 2000 ones [67].
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Figure 3.1: The image representation offers resolution (top), quality (mid-
dle) and spatial (low) scalability.

square error [67]. Formally, let Bi denote the set of code-blocks associated to
precinct i, and let cb[k] and ĉb[k] respectively denote the two-dimensional se-
quences of original and approximated subband samples in code-block b ∈ Bi.
The distortion d(i) associated to the approximation of the ith precinct is
then defined by

d(i) =
∑

b∈Bi

γ2
b

∑

k∈b

(ĉb[k] − cb[k])2 (3.1)

where γb denotes the L2-norm of the wavelet basis functions for the subband
to which code-block b belongs [67]. The γ values of the 5x3 and 9x7 discrete
wavelet transforms considered in this work can be found in the JPEG 2000
standard [3].

3.3.3 Semantical weighting of the distortion

As an alternative to the conventional SE metric presented above, a
different distortion can be considered, based on semantically meaningful
weighting of the SE so as to take into account the a priori knowledge one
might have about the semantic significance of approximation errors.
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Assuming that the information about the semantic relevance of ap-
proximation errors is provided at the precinct level, we define d′(i), the
semantically weighted distortion to be

d′(i) = w(i)d(i) (3.2)

where w(i) denotes the semantic weight assigned to the ith precinct and
d(i) is the distortion defined in Equation 3.1.

This is a key difference with earlier contributions that have considered
semantically meaningful weighted distortion metrics in the past. In this
field, it is worth to mention [11, 26] in which the segmentation is directly
integrated within a complete region-based coding scheme and [4] where
semantic analysis and the corresponding content annotations are exploited
for object-based encoders, such as MPEG-4 [37], as well as for frame-based
encoders, such as MPEG-1.

In these contributions, the metrics are exploited either before or during
the encoding step. In contrast, our work supports the posterior definition
of semantic weights given the pre-encoded stream, at transmission time
for each client, thereby allowing to serve multiple clients, with different
semantic interests, based on a single JPEG 2000 codestream. An example of
transmission session influenced by such semantical weighting of the content
is presented in Section 3.7.3, page 61.

From a functional point of view, using the weighted distortion instead of
conventional distortions does not lead to any significant increase of compu-
tational complexity . In particular, it is worth noting that the convex-hull
analysis performed on non-weighted distortions, as presented in the next
section remains valid as long as the weighting affects in a similar way all
the packets of a precinct, which is the case if weights are defined at the
precinct level.

3.4 Rate-distortion optimal replenishment

Considering the above described wavelet based image representation,
we now explain how to select the JPEG 2000 and parity packets of the cur-
rent image codestream so as to maximize the reconstructed image quality,
given a targeted transmission budget and a reference image available at the
receiver.
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As the JPEG 2000 and parity codestreams are made of a set of precincts
organized in a hierarchy of layers (see Section 2.3.3), the problem consists
in selecting for each precinct the type of replenishment (reference, parity
or JPEG 2000) and its quality level, so as to maximize the reconstructed
quality (or minimize the distortion) under the bit budget constraint.

To solve the problem efficiently, we assume the additive distortion met-
ric presented in Sections 3.3.2 and 3.3.3, for which the contribution provided
by multiple precincts to the entire image distortion is equal to the sum of
the distortion computed for each individual precinct.

3.4.1 RD optimality using the convex-hull approximation

The problem of rate-distortion (RD) optimal allocation of a bit budget
across a set of image blocks characterized by a discrete set of RD trade-offs
has been extensively studied in the literature [53, 54, 61]. An excellent
overview of the problem applied to image and video compression can be
found in [55].

Under strict bit budget constraints, the problem is hard and relies on
heuristic methods or dynamic programming approaches to be solved [53]. In
contrast, when some relaxation of the rate constraint is allowed, Lagrangian
optimization and convex-hull approximation can be considered to split the
global optimization problem in a set of simple block-based local decision
problems [54, 61]. The convex-hull approximation consists in restricting the
eligible transmission options for each block (or precinct in our case) to the
RD points sustaining the lower convex hull of the available RD pairs of the
block. Global optimization at the image level is then obtained by allocating
the available bit-budget among the individual code-block convex-hulls, in
decreasing order of distortion reduction per unit of rate.

Problem definition

For a given frame to transmit, we assume that N precincts have to be
encoded using a given set Q of M admissible replenishment solutions, such
that the replenishment choice x(i) for a precinct i induces a distortion dix(i)

for a cost in bytes equal to six(i). The objective is then to find the allocation

x ∈ QN which assigns a replenishment choice x(i) to precinct i, such that
the total distortion is minimized for a given rate constraint.
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In our case, the replenishment choice x(i) refers to one of the M refer-
ences, JPEG 2000 or parity replenishments1, 0 < x(i) ≤ M .

Formally, the rate-distortion optimal bit allocation problem is then for-
mulated as follows:

Optimal rate-constrained bit allocation For a given target bit-
budget BT , find x∗ such that

x∗ = arg min
x

N∑

i=1

dix(i) (3.3)

subject to
N∑

i=1

six(i) < BT . (3.4)

Lagrangian formulation and approximated solution

Strictly speaking, the above formulation corresponds to a Knapsack
problem [25], which can be solved at high computational cost using dynamic
programming [25, 39]. Hopefully, in most communication applications, the
bit-budget constraint is somewhat elastic. Buffers absorb momentary rate
fluctuations, so that the bits that are saved (overspent) on the current
(fraction of) the image just slightly increment (decrement) the budget al-
located to subsequent (fraction of) images, without really impairing the
global performance of the communication.

Hence, we are interested in finding a solution to (3.3), subject to a con-
straint B′ that is reasonably close to BT . This slight difference dramatically
simplifies the RD optimal bit allocation problem, because it allows the ap-
plication of the Lagrange-multiplier method. We now state the main and
fundamental theorem associated with Lagrangian optimization, because it
sustains our subsequent developments.

Theorem 1. For any λ ≥ 0, the solution x∗
λ to the unconstrained problem

x∗
λ = arg min

x

N∑

i=1

dix(i) + λ
N∑

i=1

six(i) (3.5)

1Recall that both JPEG 2000 and parity replenishments can be achieved at different
quality layers, each of these layers corresponding to a distinct replenishment solution.
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is also the solution to the constrained problem (3.3) with the constraint
BT =

∑N
i=1 six∗

λ
(i).

Proof: To simplify notations, we let D(x) and B(x) respectively denote∑N
i=1 dix(i) and

∑N
i=1 six(i).

For the solution x∗
λ, we have D(x∗

λ) + λB(x∗
λ) ≤ D(x) + λB(x) for all

x ∈ QN . Equivalently, we have D(x∗
λ) − D(x) ≤ λ(B(x) − B(x∗

λ)), for all
x ∈ QN . Hence, because λ > 0, for all x ∈ QN : B(x) ≤ B(x∗

λ), we have
D(x∗

λ) − D(x) ≤ 0. That is, x∗
λ is the solution to the constrained problem

when BT = B(x∗
λ).

This theorem says that to every nonnegative λ, there is a corresponding
constrained problem whose solution is identical to that of the unconstrained
problem. As we sweep λ from zero to infinity, sets of solutions x∗

λ and
constraints B(x∗

λ) are created. Our purpose is thus to find the solution
which corresponds to the constraint that is close to the target bit-budget
BT .

Figure 3.2: Examples of Lagrangian-based bit allocation. In all graphs,
the crosses depict possible operating points for a given code-block. Circled
crosses correspond to RD convex-hull points, which provide the set of so-
lutions to the unconstrained bit allocation problem. (a) and (b) depict the
’first hit’ solution for two distinct values of λ. (c) plots the lower convex-
hull.

We now explain how to solve the unconstrained problem. For a given
λ, the solution to (3.5) is obtained by minimizing each term of the sum
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separately. Hence, for all i,

x(i)∗λ = arg min
x(i)

(dix(i) + λ six(i)) (3.6)

Minimizing (3.6) intuitively corresponds to finding the operating point of
the ith code-block that is “first hit” by a line of absolute slope λ in a
rate-distortion graph. See the examples in Figure 3.2. The convex-hull
RD points are defined as the (dix(i), six(i)) pairs that sustain the lower

convex-hull of the discrete set of operating points of the ith code-block.
For simplicity, we re-label the MH(i) ≤ M convex-hull points, and denote
(dH

ik, s
H
ik), k ≤ MH(i) to be their rate-distortion coordinates. When sweep-

ing the λ value from infinity to zero, the solution to Equation 3.6 goes
through the convex-hull points from left to right. Specifically, if we define
Si(k) = (dH

ik−dH
i(k+1))/(sH

i(k+1)−sH
ik) to be the slope of the convex-hull after

the kth point, the kth point is optimal when Si(k − 1) > λ > Si(k), i.e. as
long as the parameter λ lies between the slopes of the convex-hull on both
sides of the kth point.

In practice, the convex-hull approximation consists in restricting the
eligible transmission options for each block (or precinct) to the RD points
sustaining the lower convex hull of the available RD points of the block.
In our case, this corresponds to the computation, for each precinct, of the
convex-hull sustaining the JPEG 2000, parity and the reference RD points.
This is depicted in Figure 3.3 where we observe that in this particular
case, the only replenishment possibility at very low bitrates is to use the
reference. With higher bitrates, the parity replenishment becomes more
interesting than JPEG 2000 until a certain bitrate threshold.

At the image level, RD optimality is achieved by ensuring that each
precinct selects its operating point, here replenishment solution, based on
the same rate-distortion trade-off, as determined by the λ parameter. The
set of global solutions to the unconstrained problem is obtained by sweeping
λ from infinity to zero. While reducing the value of λ, the optimal solution
to (3.6) progressively moves along the convex-hull for each precinct, ending
up in choosing replenishment options with an increasing rate. The process
naturally covers the entire set of solutions to the unconstrained problem,
in increasing order of byte consumption and image reconstruction qual-
ity. Under a budget constraint BT , we are interested in the solution that
maximizes the quality while keeping the bit-budget below the constraint.

When the RD optimal point is reached, the optimal replenishment
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Figure 3.3: Rate-distortion representation of the replenishment decisions
for a given precinct. Depending on the available bitrate, the client will use
the reference (cross), receive a parity packet (dot) or JPEG 2000 packets
(triangles). The original JPEG 2000 RD points and the resulting replen-
ishment decisions lie on convex-hulls.

method corresponding to that λ is selected for each precinct, and the other
replenishment options are discarded.

It is noteworthy that this method, which is RD optimal at frame level,
is applied in a greedy way for the video sequence, i.e. we consider a horizon
limited to the current frame to encode for the sequence optimal allocation.
Most video allocation processes are also characterized by such optimality
at image level and sub-optimality at sequence level.

Summary of precinct RD optimality

As a consequence of the above observations, overall RD optimality can
be achieved at the image level by selecting the JPEG 2000 and parity
packets so as to replenish the image precincts in decreasing order of benefit
per unit of rate, up to exhaustion of the transmission budget [61]. This
approach is inspired by the one defined in [15], but has been adapted to
account for the availability of a reference image and two coding methods.

The solution is RD optimal in the sense that, for the achieved bit-
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budget, it is not possible to attain a lower reconstructed image distortion
based on different allocation decisions. Indeed, by construction, it is not
possible to find a non-selected replenishment option that provides a larger
gain per unit of rate than the gain provided by already selected options.

3.4.2 Practical implementation of the RD optimal allocation

process

Now that we have explained how RD optimality is achievable at image
level, we describe how the practical RD optimal scheduling can be imple-
mented. Formally, this iterative process can be defined as follows.

Let o(i, m) denote the replenishment option already selected for the
ith precinct at the iterative step m, o+(i, m) denote the following convex-
hull optimal replenishment at step m and oref (i) denote the replenishment
solution consisting in using the reference for the ith precinct. Based on
these definitions, at the initial step, we have o(i, 1) = oref (i) ∀ i. Then, at
each step m, the greedy process decides to improve the quality of precinct
with index i∗m that provides the largest decrement in distortion per unit of
transmission, i.e.

im∗ = arg max
1≤i≤N

(
do(i,m)(i) − do+(i,m)(i)

)

(
so+(i,m)(i) − so(i,m)(i)

) (3.7)

where do(i,m)(i) and so(i,m)(i) are respectively the distortion and cost in
bytes of the replenishment option o(i, m).

To prepare the next iteration, o(i, m + 1) is set to o(i, m) ∀i 6= i∗m, and
to o+(i∗m, m) when i = i∗m. The process goes on iterating on m as long as
the bit budget is not exhausted.

Practically, this scheduling process can be efficiently implemented by
first pre-calculating the fraction in the right term of equation 3.7, which
corresponds to the next replenishment option gain. The replenishment
options are then selected by decreasing order of gain until exhausting the
rate.

This possibility to integrate pre-computed values in the rate-distortion
optimal allocation process is the key for the design of a low complexity
server, as we will see in Chapter 5.
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3.5 Background and foreground extraction of video-

surveillance sequences

In this section, we present a method to extract a dynamic foreground
and static background in a video-surveillance sequence. These two regions
will be used in the experimental validation section to demonstrate the flex-
ibility of the replenishment system. The background will serve as a second
possible reference for the replenishment system and the foreground, con-
sidered as defining Regions of Interest (RoI) for the user, will guide the
semantical weighting of the distortion metric during the allocation process.

3.5.1 Background estimation

The goal of the background estimation process is to create a background
reference frame, which is considered as a second reference candidate for the
replenishment, besides the previous decoded frame.

In practice, the background estimation is performed on a sliding win-
dow, and is based on a real-time statistical segmentation algorithm using a
mixture of Gaussians modeling for the luminance of each pixel [65] [36] [69].
This approach automatically supports backgrounds with multiple states like
blinking lights, grass and trees moving in the wind, acquisition noise, etc.
Furthermore, the background model naturally updates in an unsupervised
manner when the scene conditions are changing.

Figure 3.4 shows the mixture of Gaussians for one pixel at a given time.
It aggregates all luminance values observed for that specific pixel in the
previous frames belonging to the sliding window. The current pixel lumi-
nance is compared to the current mixture. We consider that it belongs to
one of the Gaussians if the distance between the current pixel luminance
and the Gaussian mean is lower than a given threshold proportional to the
considered Gaussian standard deviation (typically 1.6 times the standard
deviation). If the pixel belongs to one of the most probable Gaussians,
the pixel is classified as background and the relevant Gaussian parame-
ters (i.e. mean, variance, frequency) are updated. Otherwise, the pixel is
classified as foreground and the parameters of the associated Gaussian are
updated according to this additional luminance value. At the beginning
of the process, a new Gaussian is initialized each time a pixel is classi-
fied as foreground until the pre-defined maximum number of Gaussians is
reached. The maximum number of Gaussians is a parameter that should
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Figure 3.4: Statistical background modeling of a pixel using three Gaus-
sians. Multiple Gaussians aggregate the pixel luminance values observed in
a sliding window.

theoretically be adapted to the number of different states a pixel of the
background could have according to the different noises (acquisition, vibra-
tions, etc.). In practice three Gaussians per mixture perform well in most
indoor and outdoor conditions. In order to avoid the construction of Gaus-
sians with flat shapes, pixels are not considered as belonging to a Gaussian
if its update would result in a standard deviation greater than ten. This
modification of the standard algorithm results in a more reliable modeling
of the background.

For each portion of the sliding window, i.e. at any time, an estimate of
the background can thus be constructed. It only requires getting the mean
of the most probable Gaussian for each pixel. In order to get rid of tran-
sient background effects, e.g. when objects stay still and get integrated in
the background, the background estimate is updated only in regions where
the mixtures of Gaussians are stable. For each pixel, we compute the ra-
tio between the number of occurrences of the most probable and the next
probable Gaussians during the last one-second period. We assume that the
background modeling of a given pixel can be refreshed when those ratios
have not varied by more than 15% for the considered pixel and its neigh-
bours. In our experiments this spatial criteria ensures spatially coherent
background estimates.

An example of background frame generated with the proposed algorithm
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Figure 3.5: Frame generated with the background estimation process applied
to the Speedway sequence.

is illustrated in Figure 3.5 for the Speedway sequence1.

3.5.2 Transmission of background estimates for replenish-

ment purposes

In our replenishment framework, we are interested in providing an al-
ternative reference to the client. Hence, we do not need to transmit the
whole sequence of background estimates. Rather, as the background re-
mains constant for a large number of consecutive frames, the background
reference is seldom refreshed. In practice, it is updated either at a fixed
low frame-rate or only when major background changes are detected.

At the very beginning of the sequence, the background estimate is un-
stable since the number of aggregated values defining the Gaussians is very
small. In order to avoid prohibitive transmissions associated to numer-
ous background updates during this period, the first frame is considered
as being the best background estimate until the Gaussian mixtures are
considered as stable. In our simulations based on several types of video-
surveillance, the background stability is obtained within less than two sec-
onds of video. During this initialization period, a huge part of the scene can
sometimes be considered as foreground if many mobile objects are present
at the beginning of the sequence or if the sequence is very noisy. While

1The Speedway sequence is presented in Section 3.7 page 53.
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this could be considered as an inherent problem from a strict semantical
point of view, it does not have much impact on the delivered video quality
within the proposed replenishment method since our approach is based on
two reference images.

3.5.3 RoI definition

As explained previously in Section 3.4, the rate allocation process can
integrate a priori semantic information about the content. Practically, this
is achieved by multiplying during the allocation process the precinct dis-
tortion values d(i) by a weight w(i) defined for each precinct i by this a
priori information (Equation 3.2 page 40). Here, the precinct weights are
used to prioritize Regions of Interest (RoI) in the sequence.

In a video surveillance context, Regions of Interest are generally defined
to be mobile objects. In some applications, one might be interested only
in mobile objects matching pre-defined decision characteristics (e.g. size,
position, texture, etc.) or behaviors (e.g. people entering restricted areas).

Figure 3.6: Example of Regions of Interest extracted from the Speedway
sequence, at frame 200.

In our simulations, as in [32], we consider that all pixels classified as
foreground by the background estimation algorithm belong to the RoI. One
characteristic of the segmentation algorithm is that the background Gaus-
sians widths are automatically adapted to the sequence noise, i.e. the Gaus-
sians have a higher standard deviation in noisy sequences than in sequences
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with a lower noise. This feature prevents the pixels of a noisy background
from being considered as semantically important, and guarantees that the
RoI replenishment prioritization will allocate transmission resources to the
objects moving in the scene and not to non-relevant variations of back-
ground caused by the noise (see Section 3.7.3). Figure 3.6 illustrates the
regions that will be prioritized when transmitting a frame of the Speedway
sequence.

3.6 System architecture

The architecture of the proposed conditional replenishment system is
depicted in Figure 3.7.

The first operation applied on the source video is the discrete wavelet
transform of the frame to transmit. A delay module reconstructs the refer-
ence frame. The Squared Error (SE) between this reference and the frame
to transmit is then calculated. The next step is the generation of parity and
JPEG 2000 packets for each precinct, with their associated SE information.
Several quality versions of the precincts are encoded, each version charac-
terized by a particular quantization level of the precinct coefficients. These
quantization levels are calculated by the optimal JPEG 2000 rate alloca-
tion [15] for JPEG 2000 packets and the same levels are used for the parity
packets. The way parity bits are generated is explained in Chapter 4. At
the top of the figure, the background reference path is depicted. This addi-
tional reference is an alternative to the reference provided by the previously
decoded frame. This background reference is updated by the background
estimation process at regular time intervals or when the background sig-
nificantly differs from the available background, and is transmitted to the
client when updated. A by-product of the background estimation is the Re-
gion of Interest (RoI) information, as explained in the previous section. The
module selecting the RD optimal replenishment options receives the rate-
distortion pairs for each reference, parity and JPEG 2000 replenishment
options. Based on this information and the client constraints (resolution,
bandwidth, etc.) and preferences (RoI, etc.), replenishment decisions are
taken in a RD optimal way as described in Section 3.4. The JPEG 2000 and
parity segments are then transmitted to the client, with the replenishment
decisions taken for each precinct. After the decoding of these segments, the
frame is reconstructed and will serve as a reference for the next frame.

Interestingly, most of these relatively complex operations can be per-
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Figure 3.7: Overview of the proposed conditional replenishment framework. A detailed description of
the modules and data paths are provided in the text.
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formed only once and offline by the server. This is further discussed and
exploited in Chapter 5.

For completeness, an optional motion compensation (MC) module is
included on Figure 3.7 to reconstruct the reference frame. The goal of the
motion compensation module is to improve the reference accuracy. A dis-
cussion regarding the design of this module is proposed in the next chapter,
at Section 4.6.4. It opens important fundamental questions that have not
been investigated in this thesis. Hence, the proposed experiments focus on
video-surveillance content with a still background and leaves the study of
a motion compensation engine dedicated to our replenishment framework
for future research.

3.7 Experimental validation

In this section, the conditional replenishment framework is validated in
different contexts, and various versions of the system are compared.

We first analyze the performances of the proposed replenishment
method when serving a single pre-encoded content at multiple rates.
For comparison purposes, we first provide the compression performance
achieved by JPEG 2000 and MPEG-4 AVC at similar bitrates. Secondly,
we show how the background reference improves the system performances
at low rates. We then illustrate how the rate-allocation process can be
adapted to favor semantically relevant areas of the content. In the mean-
time, we demonstrate that the combination of filtered background estima-
tion and RoI-based distortion metric is able to improve the transmitted
and reconstructed version of a content initially subject to noise during ac-
quisition. Finally, as a last experimental validation, we analyze the visual
quality temporal evolution of different replenishment mechanisms.

Two sequences have been used to generate these results. The first one
is Speedway, a video-surveillance sequence in CIF format captured from a
bridge above a highway, corresponding to a period of time when vehicles
are passing in the field of view. Speedway has been captured with a fixed
camera at 25 fps during 8 seconds and is available on the WCAM european
project website [2]. The second one is Caviar, a video-surveillance sequence
presenting people walking in front of a shop. Its frame-rate, resolution and
length is similar to that of Speedway. It is available on the CAVIAR project
website [1].
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Regarding the JPEG 2000 compression parameters, both sequences have
been encoded with four quality layers (corresponding to compression ratios
of 2.7, 13.5, 37 and 76) and six resolutions. Precinct sizes have been set
to 128x128 and code-blocks have a size of 64x64. In simulations where
a background reference is used, the compressed background (∼50 kbytes)
is sent only once at the beginning of the transmission because it remains
sufficiently constant during the sequence duration.

3.7.1 Compression efficiency validation

Here, we discuss the compression efficiency of the system by comparing
three variants of the proposed replenishment mechanism to conventional
JPEG 20001 and MPEG4-AVC solutions. The performances of the pro-
posed system and of the JPEG 2000 solution refer to the transmission
of a single pre-encoded content at multiple rates. For all replenishment
methods, a single reference, provided by the previous decoded frames, is
considered. Hence, box (0) is omitted in Figure 3.7.

Figures 3.8 and 3.9 compare the performance of the following coding
methods:

• JR refers to JPEG 2000 replenishment, which means that boxes (0)
and (1) are omitted in Figure 3.7.

• PR refers to Parity replenishment, which means that box (3) is omit-
ted in Figure 3.7, in addition to box (0).

• JPR refers to JPEG 2000 and Parity replenishment.

• J2K refer to the transmission of intra JPEG 2000 frames, which
means that box (0), (1) and (2) are omitted.

• AVC refers to the transmission of MPEG4-AVC streams with two
different Intra Periods (IP). The first method (IP=1) transmits only
intra frames, offering a high temporal scalability. The second method
(IP=15) encodes an intra frame followed by 14 inter frames, reducing
the temporal scalability.

1The JPEG 2000 committee has created a video format file encapsulation JPEG 2000
codestreams called Motion JPEG 2000 [27]. Although such format would be used in real
applications to limit the number of files to handle and take advantage of the many MPEG
compatible metadata boxes, we restrain ourselves in this result section to individual
JPEG 2000 codestreams as this does not impact the compression efficiency compared to
Motion JPEG 2000.
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Regarding the rate control, the bit-budget has been uniformly dis-
tributed on all frames for JPEG 2000 and replenishment methods. With
respect to AVC, we have adapted the quantization parameters to reach the
same average bitrate as for other methods.
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Figure 3.8: Performances of the proposed system with different combination
of Parity and JPEG 2000 replenishments (JR, PR and JPR), MPEG4-
(AVC) and the purely INTRA JPEG 2000 coding scheme (J2K) for the
Speedway sequence. Frame rates and encoding parameters are defined in
the text.

We observe in Figure 3.8 for the Speedway sequence that, unsurpris-
ingly, the standard JPEG 2000 algorithm appears to be the worst scheme
from a compression efficiency point of view. J2K is 6-7 dB below PR, which
is followed by JR which performs 1 to 1.5 dB better. Finally, the combina-
tion of parity bit and JPEG 2000 replenishments improve JR by about 0.8
dB. Compared to MPEG-4 AVC, the replenishment results are convincing,
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given the increased flexibility offered by these methods and their efficient
integration in a low complexity server (see Chapter 5). At 500 kbps, JPR
is 6.5 dB above AVC IP-1, and 3 dB below AVC IP-15.

Figure 3.9 presents the same methods for the Caviar sequence. We
also observe that JPR performs better than JR by about 0.8 dB. However,
in this case, PR is not below but above JR, and just below JPR. Hence,
JPEG 2000 and parity replenishment are still complementary since their
combination exceeds both individual performance, but parity refreshments
surpass JPEG 2000 refreshments. This can be explained by the fact that the
Caviar sequence being less noisy than Speedway, the temporal correlation
is higher, favoring parity coding as we will see in Chapter 4.
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Figure 3.9: Performances of the proposed system with different combination
of Parity and JPEG 2000 replenishments (JR, PR and JPR), MPEG4-
(AVC) and the purely INTRA JPEG 2000 coding scheme (J2K) for the
Caviar sequence.
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In both Figures 3.8 and 3.9, we observe that the replenishment curves
(JR, PR and JPR) are flatter than the AVC and J2K curves. This rel-
ative slower increase of quality with the bitrate does not reflect any sub-
optimality regarding the way the replenishment methods use the available
bit budget. Rather, it corresponds to the fact that precincts that get the
opportunity to be transmitted at increased rate only moderately improve
the quality, compared to the invested bit budget. This is because those
precincts were initially approximated based on the reference, at zero trans-
mission cost. As a consequence, the gain in quality is computed with respect
to the reference approximation, while the transmission cost is compared to
zero. In contrast, for J2K and AVC schemes, an increment of quality in-
duces an increment of bit budget that corresponds to the refinement of
already partially transmitted coefficients (finer quantization with AVC or
additional layer with J2K), and not to the complete transmission of the
information needed to switch from a reference-based approximation to an
actual transmission of JPEG 2000 coefficients.

Results involving parity refreshments will be discussed more deeply in
the next chapter, after a complete presentation of the parity mechanisms.
However, the good results for both sequences of the PR method, solely
based on parity replenishments, should be underlined. In the following, we
concentrate on replenishment solutions in which parity bits are disabled
(box(1) is omitted in Figure 3.7).

3.7.2 Analysis of the benefit provided by the background

reference

In this section, we analyze the benefit obtained when considering a sec-
ond reference candidate, defined to be an estimate of the scene background
as described in Section 3.5.1 (corresponding to box (0) in Figure 3.7).

In addition to JR, J2K and AVC, we thus consider the following coding
method:

• JRB refers to JPEG 2000 conditional replenishment with back-
ground. Hence, only box (1) is omitted in Figure 3.7. This method
proposes to consider both the previous image and the estimated back-
ground as possible references for each precinct. In practice, for a given
precinct, the reference that best approximates the precinct is selected
for that specific precinct.
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Figure 3.10: Rate distortion curves of the JR, JRB, J2K and AVC methods
for the Speedway (upper graph) and Caviar (lower graph) sequence.
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Figure 3.10 presents the rate distortion curves for the Speedway and
CAVIAR sequences. We will focus on the Caviar sequence for the following
analysis. The methods represented on this figure are JR, JRB, J2K and
AVC.

At very low bitrates (100 kbps), the JRB method improves J2K by 20 dB
and JR by more than 5 dB. The difference between JR and JRB tends to
decrease with the bitrate, as the relative gain brought by the background
approximation decreases.

Original J2K

JR JRB

Figure 3.11: J2K, JR, and JRB methods for the 10th frame of the Speedway
sequence transmitted at 250 kbps.
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In order to figure out the meaning from a perceptual point of view of
the RD curves, Figure 3.11 presents snapshots of the Speedway sequence
compressed with the J2K, JR, and JRB methods at 250 kbps. We observe
that at this low bitrate, JR considerably improves the J2K method, and
still remains blurry compared to JRB.

3.7.3 Semantically weight adaptive streaming

We now consider two scenarios for which the server adapts its packet
scheduling decisions to the specific interest expressed by the client about
the scene content. In both scenarios, moving objects are considered to
be more important than the scene background. In the first scenario, this
knowledge is used to prioritize the replenishment of moving objects. In the
second scenario, the same knowledge is exploited to mitigate the impact of
a noisy content acquisition process on the replenishment decisions. Both
scenarios illustrate the flexibility of the proposed replenishment method,
and its ability to integrate individual user needs at transmission time, based
on a single pre-encoded codestream.

We introduce the following coding method:

• JROI refers to JPEG 2000 conditional replenishment with Regions
of Interest (dashed arrow in Figure 3.7). This method follows the
mechanism introduced by JRB, but defines the distortion based on a
weighted SE of wavelet coefficients (see Section 3.3.3), in order to take
into account the knowledge the server might have about the semantic
significance of approximation errors. In practice, much knowledge can
be provided based on user feedback or on some kind of automatic pre-
analysis of the scene. Here we assume that the information about the
semantic relevance of approximation errors is provided at the precinct
level based on a foreground object extraction.

To maximize the impact of RoI prioritization, the semantic weights w(i)
defined in Section 3.3.3 are set to one (zero) for precincts that belong to
the RoI (background) areas. The strategy is aggressive but defines a limit
case that enables us to get a clear idea about the potential benefit to draw
from a semantic weighting of distortion.

Note that for these results, we consider that a precinct belongs to the
RoI if at least 5% of its supporting pixels are labeled as foreground RoI pix-
els. The supporting pixels of a precinct are obtained by dyadic upsampling
of the precinct subband support.
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Figure 3.12: RoI and background quality as a function of the total trans-
mission rate for the J2K and JR methods (Speedway sequence).
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Figure 3.13: RoI and background quality as a function of the total trans-
mission rate for the JROI and JRB methods (Speedway sequence).
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Figure 3.12 and 3.13 present the PSNR of RoI and background regions
of Speedway for several conditional replenishment mechanisms. We observe
that, for the J2K method, the background quality is always higher than the
RoI because most of these background regions, such as the road and the
sky, are very efficiently compressed. Indeed, since these regions are quite
predictable, the JPEG 2000 entropy coder easily reduces the number of bits
used to code them compared to regions with a lower predictability. The
RoI contains the cars that are characterized by a large amount of details,
which are less efficiently compressed.

Compared to J2K, the JR method offers a higher quality for the RoIs,
which correspond to the zones that are more often replenished. This trend
is reinforced in the JROI method, which rapidly maximizes the RoI quality
but maintains constant background quality. This is explained by the fact
that the background areas are never replenished by JROI, and are only
defined using the background reference transmitted at the same high qual-
ity for all bitrates. Note that in our simulation, once the RoI reaches its
maximal quality, JROI does not transmit additional data to improve the
background region, even if some bit-budget is available. The JRB method
behaves like JR at high bit rates, but offers a higher background quality
at low bit rates, since the background reference can be used to increase
background quality.

Sequence with acquisition noise

In this paragraph, we consider a noisy version of the Speedway sequence
to further illustrate the flexibility of our proposed streaming server. Specif-
ically, we show that our proposed method naturally supports the exploita-
tion of a priori knowledge about the relevance of approximation errors in
the scene.

In the scenario considered here, we have added white Gaussian noise
with a standard deviation of 10 to the Speedway sequence1, as illustrated
in Figure 3.14. The noise simulates the effect of adverse surveillance con-
ditions: noisy camera acquisition, bad weather, presence of traffic lights or
moving objects (trees, ...). Note that we do not consider here noise due to
transmission errors, but noise originated in the acquisition.

1The values of the sequence components are integers between 0 and 255, and the
corresponding SNR is 23.4 dB.
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Figure 3.14: Snapshot of the Speedway sequence corrupted with additive
white Gaussian noise characterized by a standard deviation of 10.

The noise causes luminance changes in the background regions, but
these changes are not relevant with respect to the surveillance purpose of
the application and should not trigger replenishment mechanisms. Hence,
the approximation error observed on background areas should be neglected
compared to errors measured in the foreground moving areas. In our simu-
lation, this is simply done by using the JROI method, with distinct weights
assigned to foreground and background precincts. Indeed, one character-
istic of the segmentation algorithm presented in Section 3.5.1 is that the
background Gaussians widths are automatically adapted to the sequence
noise, i.e. the Gaussians have a higher standard deviation in noisy sequences
than sequences with a lower noise. This feature prevents the pixels of the
background to be considered as foreground pixels, even in case of strong
noise, which in turns guarantees that the RoI replenishment prioritization
allocates transmission resources to the objects moving in the scene, and not
to the non-relevant variations of background caused by the noise.

Moreover, the background estimation process filters the sequence tem-
porally and provides a denoised version of the background. Thus, we ex-
pect the JROI method to offer a denoised, and perceptually more pleasant
version of the sequence at the client side. This is confirmed visually and
illustrated in Figure 3.15 where the original sequence is taken as a reference
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Figure 3.15: RoI and background quality for the JROI, JRB and AVC meth-
ods in normal and noisy conditions (Speedway sequence). The PSNR is
calculated using the original (non noisy) sequence as reference.
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to compute the PSNR values obtained when transmitting the original and
noisy sequences based on the JROI, JRB and AVC methods, respectively.

The upper part of Figure 3.15 focuses on the RoI. When dealing with
original (non noisy) content, all transmitted bits of the JROI method are
dedicated to the RoI, which explains the higher performances of this method
compared to JRB, and even to AVC for sufficiently large rates. In noisy
conditions, the RoI quality of all methods sharply decreases since it is com-
puted with respect to the original sequence, while all codecs attempt to
describe the noise.

The lower part of Figure 3.15 represents the background quality. In
normal conditions, AVC outperforms JRB and JROI. In more details, the
JROI method minimizes the rate allocated to background regions, thereby
preventing the background quality to increase with the bit budget. In
contrast, JRB progressively refreshes the background regions as the global
(RoI + background) available rate increases, providing a higher overall
background quality.

In noisy conditions, we observe that JROI outperforms both JRB and
AVC. Since the background regions are modified by the noise at each frame,
the JRB (AVC) method regularly refreshes (corrects prediction errors for)
those regions, mainly to render noise effects, which ends up in decreasing
the quality compared to the original signal. On the contrary, since the JROI
method knows a priori that most of the changes affecting the background
are due to noise, it concentrates the refresh on RoI regions and almost never
refreshes the background regions, thereby providing a higher background
quality compared to the original (without noise) sequence. The same ar-
gument also explains why the background quality -measured with respect
to the original sequence- is higher than the RoI quality when considering
the JROI encoding scheme. In short, RoI noise is coded accurately while
a denoised filtered background is used as the reference for the background,
resulting in a background signal which is closer to the original.

3.7.4 Temporal evolution of the quality

For completeness, figure 3.16 shows the temporal evolution of the quality
for the JR, JROI and JRB methods. We observe that the quality offered
by these methods is quite constant during the transmission. At low bit
rates, the JR quality slightly increases until frame 70. This is due to the
fact that, at those bit rates, the background blocks are slowly replenished
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Figure 3.16: Temporal evolution of the image quality for the JRB, JROI and
JR methods (Speedway sequence transmitted at 235 kbps and 1600 kbps).
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compared to the other methods. The JRB approach introduces a peak of
bit-consumption at the beginning of the session due to the transmission of
the estimated background. The JROI method behaves similarly to JRB.

3.7.5 Error resilience capabilities

In this section, we propose a preliminary analysis of the replenishment
system performances in a noisy environment and propose simple methods to
validate our intuition. We do not consider conditional replenishment with
parity bits but restrict ourselves to replenishment with JPEG 2000 packets.
Parity bits are expected to bring an increased robustness to the system since
these bits are not only able to correct virtual channel errors, but also to
correct errors created by the transmission channel [22]. However, this is
out of the scope of this work but is certainly an interesting perspective for
future research.

The conditional replenishment transmission framework is characterized
by the fact that the refreshed information is transmitted in INTRA, without
any reference to the past. Hence, it naturally provides some resilience to
transmission errors, since an error only remains perceptible until the next
successful refresh. Unfortunately, this assertion also means that areas that
are rarely refreshed become more sensitive to transmission errors than other
regions. In order to prevent persistent errors when transmitting video in
noisy environments, a particular attention should thus be devoted to those
regions that become temporally stable after a period during which they were
significantly changing. Indeed, for those regions, if the last refreshment
before a stable period is lost, then the resulting reconstruction error affects
the whole stable period, with dramatic perceptual impact.

The problem formalization should be done in a rate distortion frame-
work, similarly to what we have done in [8] for the resilient transmission of
JPEG 2000 codestreams, and incorporate temporal considerations related
to the variability of the temporal impact of errors in our replenishment
framework. The optimization of the replenishment scheduling taking into
account this variability is beyond the scope of this paper. However, we pro-
vide an illustrative example based on an adaptive scheduling and a heuristic
protection which retransmits important refresh.

To validate our intuition, Figure 3.17 considers an error-prone channel
characterized by independent and identically distributed (iid) bit errors,
and assumes that a packet is lost as soon as one of its bits becomes er-
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roneous. The figure compares three scheduling methods. The first one is
the conventional JPEG 2000 replenishment method (JR). The second one,
denoted JR Robust I, knows the channel BER and takes it into account
to schedule JPEG 2000 packets. Specifically, it uses a first order approx-
imation to compute the reference distortion, and accounts for the packet
loss probability to compute the benefit expected from JPEG 2000 packets
transmissions. The third one, denoted JR Robust II, extends the previous
method by adding a simple heuristic to improve the robustness of critical
refresh.
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Figure 3.17: Comparison of three replenishment methods as a function of
the channel bit error rate for the Speedway sequence at 500 kbps. Trans-
mitted JPEG 2000 packet are considered as lost as soon as one of their bits
becomes erroneous. The three methods are described in the text.

Formally, let us denote (k1, q1) and (k2, q2) the time indexes and quality
levels associated to the two latest refreshment of the ith precinct. Let us also
denote dk1,q1

t (i) and dk2,q2
t (i) the distortion measured when approximating

the ith precinct at time t either based on the last or last but one refreshment,
and dref

t (i) the distortion measured based on the reference available at time
t. If we denote p1 the probability that the last refreshment of precinct
i at time t has been lost, the first order approximation of the reference
distortion can be computed as dref

t (i) ∼= (1 − p1) dk1,q1
t (i) + p1 dk2,q2

t (i). It
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corresponds to a first order approximation since it ignores the fact that the
last but one refreshment might also be lost. Similarly, the benefit expected
from the refreshment of the ith precinct at time t can be estimated based
on the knowledge of the channel BER. Those refinements of the expected
distortions are implemented by the JR Robust I method.

However, they are unable to prevent the appearance of persistent er-
rors in regions that become stable, e.g. after a moving object discloses a
still background. This is due to the fact that p1 is typically small, mak-
ing p1 dk2,q2

t (i) insignificant compared to changing areas in the frame. To
circumvent this drawback, we propose a simple heuristic to identify the
regions that are expected to remain stable for some time after significant
changes, and force an additional refreshment for them, so as to ensure with
a high probability that they will be correctly received at the client. In
practice, this is done by setting dref

t (i) to dk2,q2
t (i) for the regions for which

dk2,q2
t (i) ≫ dk1,q1

t (i), which are regions that appear to be significantly chang-
ing before k2 and stable at time k1. The curve JR Robust II in Figure 3.17
implements that heuristic. Unsurprisingly, we observe that it significantly
improves the resilience of the conditional framework to losses. We con-
clude after this preliminary analysis that an adaptation of the scheduling
algorithm should enable the replenishment framework to efficiently support
error-prone channels.

3.8 Conclusion

In this chapter, we have presented the proposed framework combining
four replenishment options. The two first options are references that can
be used to approximate the segment to transmit. The first reference con-
sists in the previous decoded frame and the second in an estimate of the
frame background. When these references offer a poor approximation of
the precinct to transmit, it can be refreshed by a JPEG 2000 or a parity
packet.

These replenishment decisions are taken in an optimal rate-distortion
framework, based on distortion metrics that can integrate at transmission
time information regarding the transmission conditions and user preferences
in the content browsed content, like regions of interest.

The remarkable feature of our system lies in the fact that the adaptation
of forwarded content to user needs and resources is performed without
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requiring to generate and manipulate multiple encoded versions of the same
content, and as we will see in Chapter 5, at low computational cost.

The proposed coding model brings interesting advantages when com-
pared to closed-loops frameworks. Although a reference is also exploited
in our work, the data transmitted are INTRA JPEG 2000 packets or par-
ity bits which tolerate a certain desynchronization between the encoder and
the decoder. This is particularly important for transmissions in error-prone
environments, as well as when serving heterogeneous clients with different
prediction references.





Parity based

replenishment 4
The content of this chapter is basically the reproduction of [18].

Our replenishment system presented in Chapter 3 offers two coding
methods to replenish a precinct that is not correctly estimated by the refer-
ence. These two methods are JPEG 2000 and parity coding. When the first
method is selected, the reference is refreshed by decoding the correspond-
ing JPEG 2000 packet. In the second case, the reference is corrected with
parity bits. This chapter describes the way our system generates and allo-
cates these parity bits to image precincts, and exploits temporal and spatial
correlation in the source.

4.1 Introduction

T
he reference precinct, typically extracted from the previous de-
coded frame, constitutes the main component of the side infor-
mation that is exploited to encode the current precinct using
parity bits. In this chapter, we analyze how the temporal cor-

relation between the side information and the precinct to encode can be
formalized in order to improve the correcting efficiency of the parity bits.
Similarly, we discuss how the nature of the data that is transmitted - images
- can be exploited during the decoding stage.

This chapter is structured as follows. We first present how the principles
of video coding using side information have been adapted to our conditional
replenishment framework. Then, we explain how to exploit the temporal
correlation between consecutive frames of wavelet bit-planes and the spa-
tial correlation inherent to an image source. We then detail the practical
implementation of the parity replenishment module. Finally, the system
performances are presented and discussed.
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4.2 Conditional replenishment with side informa-

tion

We have presented in Section 2.6 the principles of video coding with side
information. We will see in this section how we have adapted these princi-
ples to the conditional replenishment framework presented in the previous
chapter.

Figure 4.1, which has already been presented in Section 2.6, depicts
video coding systems with side information. Parity bits are generated at
the encoder based on X, the frame to transmit. With these parity bits,
the decoder corrects the side information Y , which is usually the previous
decoded frame, and generates the reconstructed frame.

Figure 4.1: Video coding system with side information.

We have seen in Section 2.6 that the rate at which we can transmit X
depends on two factors:

• The mutual information between X and Y . This value will be high if
X can be efficiently predicted from Y . This can be done by exploit-
ing the temporal correlation between the reference and the image to
transmit, and will be studied in Section 4.3.

• The entropy of X. In practice, the frame X is encoded based on code-
words that are shorter than the frame size. Encoding those codewords
independently most often result in a significant increase of entropy,
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compared to H(X). Hence, it is important to exploit the correla-
tion between the codewords of X so as to maintain the entropy of
the actual codeword source close to the initial frame entropy H(X).
In our work, this is achieved by representing X through spatially lo-
calized subband samples and by exploiting the frequency and spatial
correlation between those samples, as studied in Section 4.4.

In our system, parity bit replenishments must preserve the granular
access to the compressed data in terms of spatial access, resolution and
quality, since a major motivation of this work is scalability. Hence, parity
bits are generated at the encoder independently for each precinct, ensuring
spatial and resolution scalability. The precincts are encoded in several
embedded quality layers, each layer gathering the parity bits correcting a
certain number of consecutive bit-planes, thereby preserving the scalability
in quality.

To describe the system formally, we follow conventional notations, and
denote random variables with upper cases. Their realization is denoted
with corresponding lower cases. Bold fonts are used to denote a vector of
random variables.

Of all practical error correction methods know to date, LDPC [23] and
Turbo codes [10] come closest to approaching the Shannon limit. In this
work, although the same could be achieved with other channel codes, we
focus on LDPC codes. LDPC codes are characterized by a transformation
matrix H of size MxK. At the encoder side, the sequence of input bits
belonging to the precinct to transmit is considered as a random vector X

of length K and is mapped into its corresponding Z parity bits of length
M , achieving a compression ratio of K : M .

At the decoder side, let K be the length of the random vector Y cor-
responding to the bits of the reference precinct, which are combined with
the received parity bits Z. The initial probability distribution of the ith

reference bit Yi can be defined in different ways depending on the way the
temporal correlation is modeled. This is described in Section 4.3.

The main goal of the decoder is to exploit the source model and the
parity bits Z in order to iteratively converge toward input bits X.

Our decoding model is illustrated in Figure 4.2 as a factor graph [38].
A factor graph is a bipartite graph that expresses which variables (circles)
are arguments of which local functions (squares). The local functions fi
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Figure 4.2: Factor graph representing the source model and the LDPC code.
At each iteration of the decoding process, messages describing local distri-
butions are exchanged between nodes inside the LDPC code and with the
source model.

represent the linear transformation H and the results of that transforma-
tion are the parity bits variables Zi. Our graph consists here of two main
components: the source model and the LDPC code. The source model is
detailed in Section 4.4. It takes into account the spatial correlation between
precinct coefficients during the decoding process.

Decoding is achieved using the sum-product algorithm [38]. This al-
gorithm aims at computing the marginal posterior probabilities P (Yi =
1|Z,H) for each i. This is achieved by iteratively transmitting between
nodes messages corresponding to an estimate of the local variable distribu-
tion and updating each node with the received information.

4.3 Exploiting temporal correlation in the wavelet

domain

This section describes how temporal correlation between successive
frames is exploited to initialize the probability distribution associated to
Yi variables. We first define a model for the temporal correlation between
the wavelet coefficients of consecutive frames, and then explain how to
translate this correlation between coefficients into probability distributions
for the Yi variables, which by definition correspond to the bits of wavelet
coefficients.



4.3 Exploiting temporal correlation in the wavelet domain 77

4.3.1 Gaussian distribution of coefficients

For simplicity, we adopt a simple model to describe the temporal correla-
tion between corresponding coefficients of two consecutive frames1. Typical
models used to describe such correlation follow the Laplacian or Gaussian
distributions. In this work, we have adopted the latter one.

Figure 4.3: Probability distributions of coefficients have to be adapted due
to the representation in bit-planes. Bits representing the coefficient are
weighted assuming a Gaussian distribution centered on the coefficient.

Formally, let Cn,r,t denote the random variable associated to the nth

wavelet coefficient of the rth resolution at time t. We assume that the
corresponding coefficient at time t + 1 follows a Gaussian distribution of
variance σ2

r,t around the realization of Cn,r,t, and the probability distribu-
tion of Cn,r,t+1 is defined by:

P
(
Cn,r,t+1 = m|Cn,r,t = n

)
=

1√
2π σ2

r,t

e
−

(n−m)2

2 σ2
r,t (4.1)

Based on the coefficient distribution, we can compute the distribution

1Note that the correspondence between coefficients might account for a potential mo-
tion vector, when a motion field is defined between consecutive frames. This is not the
case in our system which omits motion compensation (see Section 4.6.4)
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for Bn,r,t+1
k , the random variable associated to the kth most significant

bit of Cn,r,t+1. For this purpose, we introduce βk(m) to denote the func-
tion extracting the value of the kth bit of coefficient m. Hence, we have
Bn,r,t+1

k = βk(C
n,r,t+1) and

P (Bn,r,t+1
k = 1|Cn,r,t = n) =

1√
2π σ2

r,t

∞∑

m=−∞

e
−

(n−m)2

2 σ2
r,t βk(m) (4.2)

Figure 4.3 illustrates this Gaussian weighting of the coefficients bits. In
the chosen example, non-significant MSB have a very low probability of
becoming significant, while the uncertainty on the value of the LSB is very
high.

4.3.2 Variance estimation

The variance parameter is estimated for each resolution by the coeffi-
cients mean squared prediction error in this resolution. For simplicity, we
consider in the following that the variables are taken at time t (Cn,r,t is
now denoted Cn,r) and denote the variance parameter for resolution r by
σ2

r . This value is computed for each frame at the encoder and transmitted
to the decoder.

This approximation can be spatially refined by taking into account the
spatial variations of this variance. Indeed, important modifications of the
content between consecutive frames are reflected in the concerned spatial re-
gions throughout several resolutions. This is illustrated in Figure 4.4 which
presents spatial maps of absolute prediction errors for distinct resolutions of
the Speedway sequence. We observe that the wavelet coefficient differences
between consecutive frames are spatially relatively coherent through reso-
lutions. This spatial coherence decreases as frequencies increase, because of
the presence of noise, and due to the fact that smaller content modifications
mostly impact high resolutions.

Hence, a coefficient will have more chance to change from one frame to
another if the coefficients belonging to the same spatial zone in the lower
frequency resolution have changed. This observation can be integrated in
the proposed system by defining the variance as a function of the coefficient
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Figure 4.4: Maps of absolute difference between resolution coefficients in
two consecutive frames, by decreasing order of resolutions starting from the
low frequency resolution on the left, for first two frames of the Speedway se-
quence. In this figure, resolutions have been resampled to the same size and
the absolute difference values of each resolution have been rescaled between
0 (white regions) and 255 (black regions).

index, based on the evolution of corresponding coefficients in the lower
resolution.

At the decoder, precincts are decoded in increasing order of frequency
(hence starting with precincts belonging to the low frequency resolution).
In this way, the decoding of coefficient Cn,r can benefit from spatial infor-
mation from the neighborhood of the coefficient Cn,r+1, in the lower fre-
quency resolution. We introduce Ln,r+1

σ which evaluates the local variance
of coefficients in the neighborhood of Cn,r+1 and is calculated as a weighted
sum of En,r+1

sq , the coefficients squared prediction error, the weight being
proportional to the neighbor distance to the coefficient Cn,r+1.

If we denote dm,n,r the absolute distance between coefficient Cm,r and
coefficient Cn,r, the local variance Ln,r

σ is defined as:
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Ln,r
σ = (

∞∑

m=−∞

1

dm,n,r

)−1 ∗
∞∑

m=−∞

Em,r
sq

dm,n,r

(4.3)

Formally, the variance of coefficient Cn,r is defined by

σ2
n,r = σ2

r

Ln,r+1
σ

σ2
r+1

(4.4)

which means that the variance of coefficient Cn,r is evaluated by the
variance of its resolution weighted by the relative modifications observed
on the neighborhood of the corresponding coefficient in the lower frequency
resolution.

The benefits of the local refinement of the variance estimation is dis-
cussed in Section 4.6.2.

4.4 Exploiting spatial correlation of precincts

This section explains how the spatial correlation of precinct coefficients
can improve the correction of the reference. First we present the model of
our source. We then detail how this source model can be integrated in the
sum-product algorithm.

4.4.1 Source model

The source model aims at capturing the statistical behavior of a source,
which is an image in our case. It mainly exploits the fact that the value of
a coefficient inside a precinct is highly correlated to its neighbors.

In our work, the image modeler is based on the Embedded Block
Coding with Optimized Truncation (EBCOT) algorithm [67], used in the
JPEG 2000 standard [3] and already presented in Section 2.3.2. We recall
here the important notions related to the EBCOT that are useful for this
chapter.

According to this algorithm, a bit is classified in one of the 19 different
categories called contexts, based on the significance1 of its eight contiguous

1A bit is considered as significant if at least one bit belonging to a higher bit-plane in
the same coefficient has its value set to 1.
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neighbors and its own significance state. The statistics of the bits can
differ highly from one context to another. The way contexts are calculated
depends on its subband since this has an influence on the way bits are
spatially correlated.

Bits labeled with the same context have the same neighborhood and
hence are characterized by a similar statistical behavior. This similar sta-
tistical behavior is exploited during the decoding by providing a soft esti-
mation of each bit based on its neighborhood.

4.4.2 Source model integration in the sum-product algo-

rithm

In practice, our system takes advantage of the image modeler as follows.
The decoder exploits the context bit probability distributions by integrating
this soft information in the sum-product algorithm. We will first see how
these distributions can be calculated, and the explain the integration in the
sum-product algorithm.

Formally, we denote by C (i) the context computed by the EBCOT
algorithm around the ith bit. The probability distribution of bit Yi, knowing
its context, is the written P (Yi = 1|C (i) = c), where c is the context index
of the ith bit.

The bit probability distributions defined for each context can be calcu-
lated in different ways. First, this distribution can be estimated based on
histogram computations, i.e. frequencies of occurrences at the encoder, and
transmitted to the decoder. This implies a significant transmission over-
head but offers the best context statistics for the precinct to transmit. At
the opposite, statistics pre-calculated on a large set of precincts belonging
to different types of images can be hard-coded at the decoder. This solution
avoids transmissions and computation, but offers generic context statistics
instead of precise statistics based on the particular precinct to decode. An-
other alternative consists in computing at the decoder side these statistics
based on the corresponding precinct in the previous frame. To decide be-
tween these three alternatives, we now analyze the temporal evolution of
the context statistics.

Figure 4.5 presents the temporal evolution of the probability distribu-
tion of the nine first contexts, for the lowest resolution of the five first
frames of the Speedway sequence. We observe that context distributions
remain quite constant for most contexts. This observation remains valid
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Figure 4.5: Temporal evolution of P (Yi = 1|C (i) = c) for the nine first
contexts for the lowest resolution. These statistics have been calculated on
the five first frames of the Speedway sequence.

for higher resolutions. At the light of this graphic, an alternative to the so-
lutions presented above consists for the encoder to restrict the transmission
to distributions that have significantly evolved since the previous frame. In
our simulations, we have however decided to rely on a hard-coded distribu-
tion, computed based on a representative set of images. We now explain
how those distributions are used by the parity-bits decoder.

At each iteration of the sum-product decoding algorithm, a hard deci-
sion is taken for each variable Yi and passed to the source modeler. The
modeler calculates the context index number c = C (i) corresponding to
the hard decisions taken for the neighbors of Yi and returns the soft infor-
mation P (Yi = 1|C (i) = c), as illustrated in Figure 4.6. The probability
of Yi is then updated for the next iteration of the sum-product algorithm.
If soft information was provided to the EBCOT about Yi instead of hard
information, the modeler could alternatively calculate a weighted sum of
probabilities associated to all possible contexts.
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Regarding complexity, we consider as a first approximation that the in-
tegration of the source model in the sum-product algorithm roughly doubles
the number of operations carried out during the decoding process. Indeed,
we consider that the complexity related to the EBCOT context computa-
tion for each bit is approximately equivalent to the complexity of the bit
probabilities update performed during the sum-product algorithm.

Figure 4.6: Hard decisions are transmitted from each LDPC node and soft
informations calculated in the Source Modeler are sent back.

SUMMARY OF EXPLOITED CORRELATION

Temporal Correlation ⇒ Gaussian distribution of coefficients

Coherence across resolutions ⇒ Gaussian variance estimation

Spatial Correlation ⇒ EBCOT context modeling

4.5 Practical implementation

This section gives practical details regarding the way the parity replen-
ishment module has been implemented.
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4.5.1 Raw coding of bit-planes

The correlation between bit-planes of corresponding precincts in suc-
cessive frames usually decreases with the bit-plane significance. When the
correlation is under a certain threshold, it is more efficient to transmit the
bits in a raw mode than to try to reconstruct the bit-planes with parity in-
formation. In the following results, the threshold value has been set to a bit
error rate between corresponding bit-planes in consecutive images equal to
0.15. This threshold value is heuristic and could obviously be refined based
on a sharper analysis of parity bits efficiency combined with the spatial
correlation information.

4.5.2 LDPC codes

In our system, a limited number of LDPC matrices H have been gen-
erated. For each precinct to encode, the smallest of these matrices able to
correct the reference precinct has been selected, and the generated parity
bits transmitted. In Chapter 5, we describe how this choice can be adapted
to individual clients and low computational cost.

We have considered regular LDPC codes with a standard bipartite graph
structure [42]: the columns weight have been set to three, and the weight
per row as uniform as possible. The cycles of length four in the factor graph
representation of the code have been eliminated [35].

A maximum value of 8000 bits has been defined for the codeword length
N . This value represents a compromise to limit the system complexity while
offering efficient LDPC codes [13, 58]. Hence, for large precincts, several
codewords characterized by the same codeword length N and parity length
M are generated and interleaved as described in the next paragraph.

The generation and storage of these multiple H matrices could be
avoided by using fountain codes [43], like the LT [40] and Raptor codes [62],
in place of LDPC codes.

4.5.3 Interleaving

Since the parity codeword length is limited, several codewords must be
generated for large precincts. In this case, the last message which contains
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the parity bits correcting the LSB usually has a higher BER1 than the
other messages. Since a single matrix H is selected for each quality layer
of a precinct, the number of parity bits M is constant for all the messages
encoded to a precinct layer. For this reason, interleaving of the precinct
bits X between the several messages is implemented to make the BER of
all messages uniform. This is illustrated in Figure 4.7.

Figure 4.7: When multiple codewords are generated for a given precinct,
interleaving of the precinct bits enables to reduce the size of the matrix
H required to correct the precinct, reducing the number of parity bits to
transmit.

1The Bit Error Ratio (BER) considered here is related to the virtual channel between
X and Y , that we assume binary and symmetric.
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4.5.4 Contexts

Practically, only a subset of the 19 contexts defined by the EBCOT [3]
are considered in the simulations. Our system considers the nine contexts
for the significance propagation and cleanup coding passes, the five sign
contexts, as well as the three contexts for the magnitude refinement coding
passes. Run-lengths and uniform contexts are not considered, as they are
not relevant to our system.

4.6 Results

In this section, we first recall the global performances of the replenish-
ment system integrating parity refreshments. Then, we present the per-
formances reached when exploiting the temporal and spatial correlations.
At the light of the spatial correlations results, we finally discuss a number
of aspects that should drive the future design of a motion compensation
module.

4.6.1 Global results

In this section, we analyze the performances of the proposed system
when transmitting a single content at multiple rates.

These results have been generated with the Speedway and Caviar se-
quences. Their characteristics have been presented in Section 3.7 page 53.
Figure 4.8 and Figure 4.9 compare the performance of our system for both
sequences. The coding mechanisms considered are JPEG 2000 Replenish-
ment (JR), Parity Replenishment (PR) and JPEG 2000 and Parity Re-
plenishment (JPR) as defined in Section 3.7.1. These results have already
been partly discussed in Section 3.7, but we focus here on the parity-bit
refresh mechanism.

We observe as expected that JPR, which combines both refresh mech-
anisms, offers the best performance for both sequences. This confirms the
fact that JPEG 2000 and parity replenishments are complementary. Imple-
mented alone, the JPEG 2000 and parity replenishments behave differently
in these sequences. In Speedway, the JR performs better than PR and the
opposite happens for the Caviar sequence. This can be explained by the
fact that Speedway is characterized by a relatively low but constant acqui-
sition noise. In this context, the correlation between frames is lower than in
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Figure 4.8: Performances of the proposed system with different combination
of Parity and JPEG 2000 replenishment for the Speedway sequence.

the Caviar sequence which is not noisy. Hence, the efficiency of parity-bits
is reduced in the Speedway sequence.

When analyzing more deeply the replenishment decisions taken in the
JPR method, we observe that parity bits are mostly used at low resolution,
where the temporal correlation is high. At higher resolutions, JPEG 2000
replenishments are chosen because of the efficiency of the entropy coding
engine, specially when dealing with long runs of zero coefficients.

A deeper analysis of the chosen replenishment options is provided in
Table 4.1. This table presents the replenishment options selected for each
precinct at various bitrates, when both parity and JPEG 2000 mechanisms
are activated. We observe that at low resolutions, the parity mechanism is
always more efficient than JPEG 2000. In intermediary resolution (resolu-
tions 2, 3 and 4), both mechanisms are selected, depending on the bitrate.
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Figure 4.9: Performances of the proposed system with different combination
of Parity and JPEG 2000 replenishment for the Caviar sequence.

At the highest resolution, JPEG 2000 is the unique replenishment method
used. These results demonstrate that the two mechanisms are complemen-
tary. At low resolutions, due to the high temporal correlation, parity refresh
are more efficient than JPEG 2000. This relative efficiency decreases with
the increasing resolutions.

When analyzing more in detail the RD graph of the precinct number
6, which is not represented here, we observe that its convex-hull starts at
low bitrates by the reference option, passes by a JPEG 2000 refresh and
finally goes through two parity refresh of increasing quality at high bitrates.
This is reflected in Table 4.1 by the fact that at low bitrates, the previous
precinct is used for the replenishment, followed by parity replenishments.
With a finer bitrate granularity in the table, we would have observed the
JPEG 2000 refresh between the these two replenishment options (between
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Table 4.1: Replenishment mechanisms selected for each precinct at various
rates for the first replenished frame of the Speedway sequence.

1000 kbps and 3000 kbps).

Quite surprisingly, in precinct number 2, the JPEG 2000 refresh are
more efficient than the parity refresh at low bitrates. This can be explained
by the fact the first quality layers of this precinct have few bit-planes.
Hence, the number of bits to transmit is low, and the parity codewords
are short. With such short parity codewords, the LDPC compression ef-
ficiency is much lower than JPEG 2000. However, at higher bitrates, the
transmission of higher quality layers with more bit-planes is possible. As
confirmed in the last columns of the table, parity coding is more efficient
than JPEG 2000 in this case.

4.6.2 Temporal correlation

The way temporal correlation has been exploited in our work has been
presented in Section 4.3. First, a Gaussian distribution has been proposed
to model the temporal evolution of coefficients. It has then been observed
that the coefficients temporal evolution is spatially coherent across resolu-
tions. To integrate this observation into the the Gaussian model, a spatial
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refinement of the Gaussian distribution variance has been adopted.

Figure 4.10 illustrates the benefits obtained from these two solutions to
exploit the temporal correlation. These results have been generated on a
portion of the Speedway sequence, and only parity replenishments are con-
sidered (PR method in Section 3.7.1). The curve labeled “Standard initial-
ization” corresponds to the standard initialization usually encountered in
video coding systems with side information. In this case, the BER between
precincts is measured at the encoder, and is used in combination with the
reference precinct bits to initialize the probabilities during the LDPC de-
coding. The second curve “Simple Variance” correspond to the integration
of the Gaussian distribution. For third curve labeled “Predicted Variance”,
the system adapts the Gaussian variance based on the prediction error of
the corresponding coefficients observed in the lower resolution. Each curve
brings an increase of about 0.3 dB compared to the previous at low bi-
trates and about 0.7 dB at high bitrates. At 1500 kbps, the exploitation of
temporal correlation brings a gain of 1.5 dB.

4.6.3 Spatial modeling with EBCOT

As presented in Section 4.4, spatial correlation is exploited based on
a spatial image modeler, the EBCOT. Various experiments have been re-
alized to determine in which context this modeler improves the system
performances.

It rapidly appeared that spatial modeling does not improve the perfor-
mances when the reference is consistent with the EBCOT model, which
is the case when the reference is close to a natural image. In this case,
the reference image statistics are very similar to the targeted image statis-
tics. Hence, the refinement of the code-block bits probabilities achieved
by the EBCOT is not significant, and no improvement in the compression
efficiency is observed.

However, when the reference image available at the client has suffered
a degradation, its statistics do not always correspond to an image1. In
this case, the EBCOT detects these incoherences and helps the LDPC de-
coder by correcting the bits probabilities that do not respect natural images
statistics.

To better understand the role of the EBCOT, we have added increasing
random errors to the reference code-block coefficients, focusing either on

1This might for example occur when the prediction results from motion compensation.
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Figure 4.10: Comparison of the three methods exploiting the temporal cor-
relation between frames in the wavelet domain.

LSB, or on MSB bit-planes1, and have analyzed how the length of parity
codes increases with error rate, with and without EBCOT. The results of
these simulation are presented in Figure 4.11. The figure illustrates the
evolution of the gain in compression length offered by the EBCOT when
errors are added to the reference LSB and MSB bit-planes, respectively.
The abscissa of the graph represents the coefficients error energy, meaning
that for a given position on the X axis, the number of errors on the LSB will
be much higher than on the MSB. The outcome of this figure is obvious:
the EBCOT improves the system performances mainly when the reference
contains errors in the MSB.

This is explained by the fact that spatial correlation is high in these bit-
planes, while bits belonging to lower bit-planes are less predictable. This is
confirmed by the analysis of the refinement contexts which are the contexts

1Practically, code-blocks bit-planes have been divided in two groups of equal size: LSB
bit-planes and MSB bit-planes.
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of coefficients that have become significant in earlier bit-planes. The prob-
abilities associated with these contexts are very close to 0.5, meaning that
very few information can be expected from the neighborhood. This is also
in line with the observations made when analyzing the special JPEG 2000
coding mode designed to reduce the coding complexity and called the by-
pass mode [3]. With this mode enabled, only the four MSB bit-planes of
the code-block are entropy encoded. The remaining bit-planes are raw-
coded in the bit-stream. We have shown in [17] that this mode does not
impact significantly the compression performances (less than 2% decrease
in compression efficiency), confirming the fact that few correlation can be
extracted from low bit-planes.
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Figure 4.11: Spatial modeling increases the system performances when the
reference available at the client is erroneous. This figure illustrates the
increase in compression efficiency brought by the spatial modeler when noise
is added to the reference LSB and MSB bit-planes. These results have been
generated using code-blocks of the third resolution of the Speedway sequence.

A deeper analysis of Figure 4.11 reveals that the gain provided by the
EBCOT in the MSB tends to saturate and even decrease when error rates
increase. This is due to the fact that when an error occurs, the bit contexts
are affected. With a high number of errors, contexts of erroneous bits are
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also erroneous, preventing the EBCOT to offer a correct prediction.

We will see in the next section how metrics used in the motion estima-
tion module can be chosen to create errors which are efficiently corrected
by the spatial modeler.

Note that the above result is surprising, as spatial modeling has been
used successfully in other works dealing with related coding contexts, and
such conclusions have never been drawn. We now explain the main differ-
ences between these works and ours. The EBCOT has for example been
integrated in a joint source-channel image coding system [22]. The main
difference with our system comes from the fact that in that work, which
aims at coding individual images, no reference is used to initiate the decod-
ing, and image statistics are thus welcome to help the turbo decoding. In
our case, the system is initiated with a coherent reference image, character-
ized by image statistics related to the image to decode. Hence, the benefit
to draw from an image source model is reduced.

A second difference comes from the spatial scalability requirement. In
the case of [22], spatial scalability is not required and precincts can be
much larger than in our system. With large precincts, another division of
the wavelet coefficients into parity packets can be done. In the case of [22],
a parity packet aims at correcting entire bit-planes. Hence, before decoding
a given bit-plane, all the previous bit-planes are correctly decoded. In that
case, the system can entirely trust the context value of a coefficient, which is
calculated based on previous bit-planes. In our case, since several bit-planes
are decoded simultaneously, the confidence in the context of a coefficient is
limited and reduces the benefit to draw from the EBCOT.

Hence, our parity decoder with spatial modeling prefers a small number
of errors with a high magnitude than many errors of small magnitude.

4.6.4 Preliminary investigation of the design of a motion

compensation module in a parity replenishment con-

text

In the previous section, we have explained that the image modeler is
mostly efficient when the reference mainly differs from the signal to encode
in high-magnitude coefficients. This observation is of primary importance
regarding the design of a motion compensation module, since the underlying
motion estimation engine has some freedom in shaping the prediction error
based on appropriate selection of motion vectors.
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Our parity decoder with spatial modeling prefers a small number of er-
rors with a high magnitude than many errors of small magnitude. Hence,
the motion estimation algorithms should prioritarily reduce the spatial ex-
tent of the errors. In other words, when possible, the motion estimation
engine should prefer a prediction that results in few errors of high ampli-
tude rather than a prediction that introduces smaller but more frequent
errors. By modifying the metrics used in the motion estimation module,
we can favor the prediction option that correspond to localized errors of
important magnitude.

Figure 4.12 illustrates two common metrics used in image and video
coding: The MSE (Mean Squared Error) used for rate allocation and SAD
(Sum of Absolute Differences) used in motion estimation. As we are looking
for a metric favoring few errors with a high magnitude, we propose to use
another metric, the SRAD (Sum of Rooted Absolute Difference) for this
task. Compared to SAD and MSE, the distortion relative to small errors
is increased and large errors bring a reduced distortion with the SRAD
metric.

The design of a motion compensation that would exploit the specificities
of our proposed system has not been considered in this thesis but is certainly
an interesting research perspective.

4.7 Conclusion

This chapter presents an attempt to complete the conditional replen-
ishment framework with the paradigm of coding with side information. A
reference frame, typically the previous frame, constitutes the main compo-
nent of the side information that is exploited to encode the current frame.

To preserve compatibility with JPEG 2000 intra coding, the side in-
formation has to be exploited in the wavelet transform domain. Hence, a
particular attention has been devoted to the definition of a practical coding
framework that is able to exploit the temporal but also spatial correla-
tion among wavelet subbands coefficients, while defining the parity bits on
subsets of bit-planes to preserve quality scalability.

With that respect, three original proposals have been made in this chap-
ter, namely

1. The temporal prediction of individual bits of wavelet coefficients
through a Gaussian coefficient distribution formalism,
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Figure 4.12: Different metrics for absolute differences. The MSE (Mean
Squared Error) used for rate allocation is compared to SAD (Sum of Abso-
lute Differences) usually used in motion compensation, and to the SADR
(Sum of Absolute Difference Root). The SADR, which is proposed in this
work, is expected to create motion estimation errors that will be efficiently
corrected by the spatial modeler.

2. The spatial adaptation of the Gaussian variance based on the corre-
lation inherent to adjacent resolutions,

3. The exploitation of spatial correlation through context-based bit-
plane prediction and iterative decoding strategies. The findings re-
lated to this exploitation of spatial correlation are important since
they should drive the design of the motion-compensation module,
which is a mandatory step to extend our replenishment system to
any kind of moving content.

These three mechanisms contribute to improve and reinforce the decod-
ing capabilities of parity bits.

Simulations with video-surveillance sequences have shown that the ad-
dition of parity bits offers significant improvement compared to pure intra
JPEG 2000 refresh. Hence, the parity bits provides a way to preserve high
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access flexibility while decreasing the transmission cost in terms of band-
width compared to pure INTRA-based conditional replenishment solutions.

The performances of the parity-only replenishment framework encour-
ages the extension of this work toward the more conventional context of
distributed coding, in which an encoder with a limited complexity is a ma-
jor motivation. With respect to this, the three mechanisms described above
should be implemented at the decoder side only, without impacting neg-
atively the system performances. This migration to the client is left for
future research.



Low complexity

scalable video server 5
The content of this chapter has been published in [19, 20],
and is extended here to the case of parity replenishment.

In this chapter, we consider the practical deployment of the replenish-
ment system described in Chapter 3 to serve a large number of heteroge-
neous clients while preserving an acceptable computational complexity. The
main objective is thus to support low cost adaptation to user requests and
resources.

5.1 Introduction

A
s a key and crucial contribution, we demonstrate in this chap-
ter that most of the computation needed to take the replen-
ishment decisions can be performed off-line, without preventing
the server to adapt its decisions to the actual transmission re-

sources and to the semantic interest defined on-line by a particular user
during the browsing session. In practice, all these pre-computed informa-
tions are gathered in a file, named Rate-Distortion Index File (RDIF) in
the following.

The above statement has important and interesting practical conse-
quences. In particular, it means that a single index file is pre-computed and
exploited to cover multiple transmission scenarios like the ones presented
in Section 3.2, each scenario representing a particular interest expressed
by the user. It also implies that the proposed server naturally adapts to
fluctuating and heterogeneous bandwidth conditions.

Two important characteristics of our conditional replenishment system
described in Chapter 3 are at the root of this interactive low complexity
video server.
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Firstly, the replenishment framework circumvents the drawbacks of
closed-loop prediction systems while preserving coding efficiency by com-
bining multiple refreshment mechanisms and references. In our case, two
refreshment mechanisms are considered: the first considers INTRA coding
of the fresh information, while the second is based on parity bits, which re-
laxes the usual constraint of encoder-decoder tight synchronization. This is
especially relevant when addressing heterogeneous clients dealing with dif-
ferent prediction references as well as transmissions in lossy environments.
In such contexts, the JPEG 2000 INTRA replenishments and the soft de-
coding of parity bits increase the stability of the entire system.

Secondly, the framework is able to adapt the content to client needs
and semantic interest, e.g. spatial regions of interest defined by the user.
These constraints are exploited independently of the compression stage,
which means that they can be provided a posteriori, at transmission time
by each individual user.

5.2 Serving multiple heterogeneous clients: rate-

distortion index file definition

As explained in Section 3.4, rate-distortion optimal allocation of trans-
mission resources ends up in selecting for each user the optimal precinct re-
plenishment decisions, based on the convex-hull sustaining the JPEG 2000,
parity and reference RD points. We will show that most of the information
required for this allocation process can be computed only once, and off-line.

First, we introduce some notations. As explained in Section 3.6, the
parity quantization levels have been set to the same value as the optimal
JPEG 2000 quantizations levels. Hence, we denote Q the set of JPEG 2000
and parity layers corresponding to these quantization levels and q the layer
indexes, with q ∈ Q.

In a video streaming context, we consider the transmission of frame
t, and denote dk,κ(i, t) to be the distortion measured when approximating
the ith precinct of frame t, based on the κ first layers of the corresponding
precinct in frame (t−k). The replenishment distortion of precinct i at time
t with q JPEG 2000 layers is denoted dJ(i, t, q) = d0,q(i, t) and the size in
bytes of these q JPEG 2000 packets is denoted sJ(i, t, q).

When parity bits aim at rendering the precinct i of frame t by cor-
recting the corresponding κ first layers of the corresponding precinct bits
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in frame (t − k) with a quantization level q, the distortion of this parity
packet generated is denoted dP (i, t, q) and the size in bytes1 of this packet

is sk,κ
P (i, t, q).

In absence of refreshment, the reference distortion for precinct i at time
t is denoted dref (i, t).

Figure 5.1: Rate-distortion representation of the replenishment decisions for
the ith precinct at time t. The variables required to compute the convex-hull
for an optimal allocation are the reference distortion dref (i, t) and the re-

plenishment data lengths sJ(i, t, q), sk,κ
P (i, t, q) and distortions dJ(i, t, q) and

dP (i, t, q). Note that for visual clarity, the quantization levels of JPEG 2000
and parity refreshments do not correspond in this figure.

We reproduce a figure already presented in Section 3.4, which gives a
rate-distortion representation of the possible replenishment decisions for a
given precinct. From this figure, we observe that the following variables are
required for the allocation process:

• dref (i, t), the reference distortion for precinct i at time t in absence
of parity or JPEG 2000 refreshment. Formally, when the latest re-
plenishment of precinct i occurred ki

t frames earlier than t with a
refresh of quality κi

t, the reference distortion dref (i, t) for precinct

i at time t is equal to dki
t,κ

i
t(i, t). When a background reference

1Section 4.5.2 details how this size is computed in practice.
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is used, as in Section 3.5, the best replenishment solution between
the previous replenishment reference and the background reference
is calculated. Letting b(i, t) denote the distortion obtained when ap-
proximating the ith precinct of frame t based on the latest version
of the background, the reference distortion is defined in this case by
dref (i, t) = min[dki

t,κ
i
t(i, t) , b(i, t)].

• dJ(i, t, q), the distortion associated with a JPEG 2000 refreshment
with layer q.

• dP (i, t, q), the distortion associated with a parity refreshment with
layer q.

• sJ(i, t, q), the size in bytes of a JPEG 2000 refreshment with layer q.

• sk,κ
P (i, t, q), the size in bytes of a parity refreshment with layer q based

on the κ first layers of frame (t − k).

The distortion and size in bytes of JPEG 2000 and parity refreshments
must be computed for each JPEG 2000 and parity layer.

When the server has to cope with a large number of clients, possibly
accessing distinct streams, the real-time calculation of the sk,κ

P (i, t, q) and

dref (i, t) = dki
t,κ

i
t(i, t) ∀ k > 0 and q ∈ Q and κ ∈ Q values of interest

becomes computationally intractable. In order to decrease this complex-
ity, we propose to separate the process in two phases. During an off-line
phase1, the server performs once and for all most of the computationally
expensive operations, and stores the results in an index file. This index
is then exploited for on-line adaptive scheduling of packets, based on the
actual resources and interest of a particular client.

Figure 5.2 depicts the off-line operations generating the compressed bit-
streams and leading to the creation of the RDIF. The precincts issued from
the wavelet transform are JPEG 2000 and parity encoded. The distortion
and cost in bytes of the generated packets are passed to the RDIF. Simi-
larly, the distortion of the reference is calculated and passed to the RDIF.
To simplify, the generation of the background reference has not been de-
picted in this figure.

1Off-line means here that computations are performed independently of the actual
semantic weights wt(i) or transmission resources experienced by a particular user.
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Figure 5.2: Generation of compressed data and rate-distortion (RD) in-
formation at the encoder side. The main modules consist in the discrete
wavelet transform (DWT), the delay and optional motion compensation
module (MC), the generation of parity and JPEG 2000 data with their as-
sociated cost in bytes and squared error (SE), and the calculation of the
reference squared error.

Reducing the cost associated to RD pre-computations

Among the values required for the allocation process, the JPEG 2000
distortion values dJ(i, t, q) and byte costs sJ(i, t, q) are directly computed
during the encoding process, for each q ∈ Q. For the parity distortion,
this can be avoided since parity and JPEG 2000 layers quantization level
correspond. Hence, dP (i, t, q) = dJ(i, t, q).

In contrast, the computation of the dk,κ(i, t) values which are used to
calculate the reference distortion must be done for all k > 0 and κ ∈ Q.
Hence, this implies a significantly larger effort, both in terms of computa-
tion and memory resources. In the following section, we analyze closely the
temporal evolution of these distortion values in order to approximate them
with reduced complexity.

A similar problem arises for the parity replenishment lengths sk,κ
P (i, t, q).

The number of parity bits required to correct a precinct at a given quan-
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tization level depends on the virtual channel noise1 between the reference
precinct of quality κ located k frames earlier and the current precinct. Since
the computation of the virtual channel features for all layers and all possi-
ble previous frames is very high, an approximated estimation is proposed
in Section 5.4, in which we also propose a method to adapt the length of
parity packets as a function of this estimated virtual channel noise.

5.3 Estimation of the distortion induced by a pre-

vious reference replenishment

In this section, we explain how to estimate dk,κ(i, t) at low computa-
tional cost. To understand how the distortion of a precinct is affected by
the time elapsed between the last refreshment and the current time, we have
calculated the temporal evolution of the SE distortion between a precinct
and its corresponding references in previous frames (see Figure 5.3), for the
ten first frames of the Speedway sequence. The resulting distortions are
illustrated in Figure 5.4.

Figure 5.3: Calculation of the temporal evolution of precinct P , which cor-
responds to the red zones of resolution 1.

We first observe on Figure 5.4 that the SE increases with the temporal
distance much more significantly for the low frequency resolutions than for

1The concept of virtual channel has been presented in Section 2.6
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Figure 5.4: Temporal evolution of the distortion and approximated distortion between a
precinct to transmit and the corresponding precincts in previous frames, for all resolutions.
The values represent the SE increase in percents compared to the first frame SE. Note that
the scale of the ordinates decreases significantly with the resolution.
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high frequency resolutions. A second observation is related to the temporal
duration of the SE increase. In the lowest frequency resolution, the SE
increases consistently during several frames while this is not the case for
the higher frequencies.

These two observations can be explained by the fact that the sequence
temporal correlation is mostly present in the low frequencies. Higher fre-
quencies, which mostly contain sequence details and noise have a signifi-
cantly lower temporal correlation. Hence, the SE evolution is more corre-
lated to the frame distance in the low frequency resolutions, which makes
it more predictable. This is important for the rate allocation process since
errors on the SE prediction of low frequencies have a higher impact on the
final quality than errors on the high frequencies1.

Our SE approximation integrates these two observations and estimates
the SE between distant frames by a weighted sum of the SE between consec-
utive intermediary frames. This approximation is motivated by Figure 5.5
which depicts the hierarchy of layers associated to frames between time
t − k and t. We denote κmax the quality layer with the highest quality.
The distortion dk,κ(i, t) (dashed arrow in the figure) can be approximated
based on a distortion computation path that only relies on dJ(i, t − k, q)
and d1,κmax(i, τ) values, with t − k < τ ≤ t, each step being characterized
by a weight that depends on the precinct resolution and frame distance.

Formally, the equation corresponding to this approximation is the fol-
lowing:

d̂k,κ(i, t) = dJ(i, t − k, κ) +
k−1∑

l=0

ω(l, r) d1,κmax(i, t − l) (5.1)

The role of the ω(l, r) term is to adapt the influence of the frame distance
l to the precinct resolution r, according to both previous observations.

ω(l, r) = α(r) e−(R−r) e−l (5.2)

where R corresponds to the total number of resolutions, r corresponds
to the precinct resolution index and is numbered as previously in this work

1Indeed, low frequencies have a higher weight in the rate allocation process since their
γs L2-norm of the wavelet basis functions is significantly higher. Section 3.3.2 explains
how this norm which is integrated in the distortion metric has an influence on the rate
allocation process.
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Figure 5.5: Path used to approximate the distortion of the previous refer-
ences, compared to the optimal path (dashed arrow). This approximation
significantly decreases the pre-processing complexity and storage require-
ments, without significantly impairing the streaming performance.

(r = R for the lowest resolution) and α(r) has been defined in our simula-
tions as:

α(r) =
30

1 + (R − r)
(5.3)

Figure 5.4 illustrates the approximation (dashed red curve).

The gain in complexity resulting from this approximation is obvious:
distortion values only need to be calculated between adjacent frames, at
the highest quality level. For more distant frames, simple weighted sums
of previously computed SE are necessary.

Formally, the distortion dk,κ(i, t) only relies on the one hand on dJ(i, t−
k, q) which corresponds to the distortion between layers in frame t− k and
is defined by the quantization levels of the encoding process, and on the
other hand on d1,κmax(i, τ) values which are only calculated once for each
frame. This significantly reduces the amount of values to compute and
store in the index file, compared to dY,Q

X (i), where X, Y and Q variables
take all possible values.
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If we denote Id to be the number of previous frames considered for the
calculation of the previous reference distortion, we turn the O(Id ∗ κmax)
complexity into O(Id + κmax).

We will see below in Section 5.5 that this approximation does not have
a significant impact on the system performances.

5.4 Parity coding rate allocation

We have explained in the previous section how to approximate at
low computational cost the reduction of distortion resulting from the
JPEG 2000 and parity replenishment options. We now consider the cost in
bytes associated to these options.

In the case of JPEG 2000, the replenishment lengths sJ(i, t, q) are com-
puted during the off-line encoding process. For the parity replenishment
lengths, the number of parity bits sk,κ

P (i, t, q) required to correct the refer-
ence depends on the virtual channel noise, which is specific to each client
session since this reference depends on previous replenishment decisions.
Hence, pre-computation of channel noise should consider all possible refer-
ences for precinct i, ending in a tremendous computational work. We now
explain how to reduce this computational load with minor impact on the
RD optimal allocation process.

5.4.1 Virtual channel temporal evolution

In this work, as a first approximation, we characterize the virtual chan-
nel noise with the BER (Bit Error Rate). As it has been done previously
with the SE, we first analyze how the BER evolves as a function of the
temporal distance between the reference corrected based on parity bits,
and the actual precinct to encode. This is illustrated in the Figure 5.61

which represents the BER of the four lower resolutions evolving with the
frame distance.

1Only the four low resolutions are illustrated since the BER temporal evolution for
higher resolutions is not significant. This can be explained by the fact that at high
resolution, the temporal correlation between precincts is very low and hence the BER
between these precincts is very high. This is true whether the precincts are temporally
close or not.
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The observations made in the previous section for the SE are valid for
the BER. The BER increases are more significant and consistent with the
temporal distance for low resolutions.

The proposed BER temporal approximation is very similar to the SE
one. It also restricts the computation of BER values to adjacent frames and
consists in a weighted sum of BER values computed on previous frames.
Formally, we denote BERk,κ(i, t, q) to be the BER measured when approx-
imating the qth layer of the ith precinct of frame t, based on the κ first
parity layers of the corresponding precinct in frame (t − k). In particular,
the replenishment of precinct i at time t with q layers has an associated
BER denoted BER(i, t, q) = BER0,q(i, t, qmax).

Similarly to the SE approximation, BERk,κ(i, t, q) can be approximated
based on a BER computation path that relies on BER(i, t − k, κ) and
BER1,κmax(i, τ, κmax) values, with t − k < τ ≤ t, each step characterized
by a weight which depends on the precinct resolution and frame distance.
However, since in this case we are calculating the BER between precincts
that both can be encoded at any layer (q and k), we add to the approxima-
tion the term BER(i, t, q), which corresponds to the BER between between
layer qmax and q of the ith precinct at time t.

Formally, the equation corresponding to this approximation is the fol-
lowing:

B̂ER
k,κ

(i, t, q) = BER(i, t− k, κ) +
k−1∑

l=0

ω′(l, r) BER1,κmax(i, t− l, κmax)

+ BER(i, t, q) (5.4)

where ω′(l, r) is defined as

ω′(l, r) = e−β1 l e−β2 (R−r) (5.5)

where β1 = 0.01, β2 = 0.5 in our simulations, and R corresponds to the
total number of resolutions and r to the precinct resolution index and is
numbered as previously in this work (r = R for the lowest resolution).

Like in the SE case, BER values only need to be calculated between ad-
jacent frames, at the highest quality level. For more distant frames, simple
weighted sums of previously computed BER are necessary. Formally, the
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Figure 5.6: BER between a precinct to transmit and the corresponding
precincts in previous frames, for the four lower resolutions, as a function
of the temporal distance between both frames. The values represent the per-
centage of BER increase compared with the first frame BER. The proposed
approximation for these BER is represented in dashed red curves.
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distortion BERk,κ(i, t) only relies on BER(i, t−k, κ) which corresponds to
the BER between layers in frame t−k, on BER1,κmax(i, τ) values which are
only calculated once for each frame and on BER(i, t, q). This significantly
reduces the amount of values to compute and store in the index file, com-
pared to BERY,Q

X (i), where X, Y and Q variables take all possible values.
Again, if we denote IBER to be the number of previous frames considered
for the calculation of the BER, we turn the O(IBER ∗ κmax) complexity
into O(IBER + κmax).

5.4.2 Modelization of the evolution of the parity length with

the virtual channel noise

Now that the scheduler can exploit a low complexity approximation
to estimate the BER between a precinct and its reference, it still requires
to estimate the number of parity bits to transmit in order to correct the
reference precinct, based on this estimated BER.

Hence, we now have to calculate sk,κ
P (i, t, q), the minimal parity length

required to correct the reference. Practically, a limited number of LDPC
matrices H have been generated, as explained in Section 4.5. The cost in
bytes sk,κ

P (i, t, q) corresponds to the codeword length associated with the
smallest of these matrices able to correct the reference.

Figure 5.7 represents the evolution of sk,κ
P (i, t, q) as a function of the

various BER observed with the previous references. More precisely, the
X axis represents the BER observed between precinct i at time t and the
same precinct at time (t − k), for 1 ≤ k ≤ 9, and the Y axis represents

the increase of sk,κ
P (i, t, q) compared to s1,q

P (i, t, q). The observed values are
represented by blue dots and the proposed approximation by red dots.

Formally, the estimated parity packet length is:

ŝk,κ
P (i, t, q) = s1,q

P (i, t, q) + µ(r) ∗ (BERk,κ(i, t, q) − (BER1,q(i, t, q) ) + ν(r)
(5.6)

where µ(r) and ν(r) denotes the parameters of the linear approximation.
These parameters are calculated once for each resolution r. Figure 5.8
illustrates this approximation. The s1,qP

t (i) values are stored in the RDIF,
and the BER values are approximated as explained in the previous section.

Regarding Figure 5.7, we observe as expected that sk,qP

t (i) increases
when the noise increases, and as discussed previously, the BER variations
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Figure 5.7: Evolution of the parity length with the virtual channel noise,
for the four lower resolutions. The blue dots represent the observed values,
the red dots the proposed approximation and the two lines represent a linear
regression of both sets.

- and hence the parity length variations - are more significant in the low
resolutions. The parity length approximations are usually slightly above
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Figure 5.8: Illustration of the approximation used to estimate the parity
packet length sk,qP

t (i). It is based on the s1,qP

t (i) value available in the
RDIF and BER approximations presented in Section 5.4.1.

the required lengths, i.e. the blue dots are usually located above the red
ones, which has a (small) impact on the parity performances. In few cases,
the approximation is below the required length. In this case, the decoder
will not be able to correct the reference. The two parameters µ(r) and ν(r)
can decrease this number of uncorrectable references, at the expense of a
slight decrease in performances.



112 Chapter 5. Low complexity scalable video server

5.5 Results

In this section, we first analyze the impact of proposed temporal dis-
tortion and parity length approximations on the quality of transmitted
sequences at various bitrates. We then quantify the gain in memory and
computational resources that obtained with these approximations for a spe-
cific transmission scenario.

5.5.1 Transmission quality

Figure 5.9 and Figure 5.10 compare the performances of the optimal
transmission system (without approximations) with the system integrat-
ing the SE approximations described in Section 5.3 for the Speedway and
Caviar sequences respectively, using the JRB method (see Section 3.7.2).
We observe that the system performances are penalized at low rates, but
rapidly reach those of the optimal method as the rates increase.
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Figure 5.9: Comparison between the transmission of the Speedway sequence
with and without the temporal distortion approximation.

Figure 5.11 compares the performances of the parity rate allocation with
and without the parity length approximations presented in Section 5.4 for



5.5 Results 113

100 300 500 700 900 1100 1300 1500
35

36

37

38

39

40

41

42

43

44

45

Bit rate (kbps)

P
S

N
R

 (
dB

)

 

 

JRB
JRB Approximation

Caviar
Sequence

Figure 5.10: Comparison between the transmission of the Caviar sequence
with and without the temporal distortion approximation.

the PR method (See Section 3.7.1). We observe that these approximations
have a slightly more significant impact as the rate increases. This is ex-
plained by the fact that at higher rates, a larger number of parity packets
must be transmitted, increasing the parity length approximation errors and
hence increasing the number of unnecessary parity bits transmitted.

5.5.2 Memory and computational resources

The gain in memory and computational resources enabled by the pro-
posed approximations is illustrated in Figure 5.12, which plots the memory
and computational complexity requirements for three different implementa-
tions of our proposed replenishment framework within a video server. For
clarity, we only consider the JR replenishment method to illustrate this
gain and hence focus on the temporal distortion approximations, but sim-
ilar gains are of course observed for the JPR method which can combine
temporal distortion approximations with parity length approximations.

The first implementation, called Optimal Online strategy, computes the
reference distortion required for the rate allocation of each individual user
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Figure 5.11: Impact of the parity length approximations on the received
sequence quality. The results are obtained using the PR method for the
Speedway Sequence.

at transmission time, knowing the exact scheduling history of the user. The
Optimal Offline strategy computes and stores all possible reference distor-
tions off-line, without any approximation, by anticipating all the precinct
references resulting from possible earlier transmission strategies. The Pro-
posed approximations strategy only pre-computes the distortion resulting
from the approximation of a precinct based on its previous correspondence,
encoded at the highest quality level and uses Equation 5.1 to estimate the
missing reference distortions, as explained in Section 5.3.

In Figure 5.12(a), we observe that the memory required by the Optimal
Offline strategy increases linearly with Id

1, while it remains constant for
the other strategies. In Figure 5.12(b), the server complexity is measured in
terms of the numbers of arithmetic operations required for the computation
of the distortion with Id set to 10. We observe that the complexity of the
Optimal Online strategy increases significantly with the number of users,

1Recall that Id corresponds to the number of previous frames considered for the cal-
culation of the previous reference distortion
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Figure 5.12: Comparison of (a) memory and (b) computational resources
for three different implementations of the proposed replenishment frame-
work. Memory is depicted as a function of the index depth Id, while com-
putational resources are presented as a function of the number of server
clients.
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since the computation are performed independently for each client. For the
other strategies, most operations are performed offline, and the additional
required online operations appear to be insignificant compared to the offline
operations. This is reflected by nearly horizontal curves for these strategies
in Figure 5.12(b).

5.6 Conclusion

In this chapter, we have presented a low complexity server based on the
conditional replenishment mechanisms presented in Chapter 3. This server
is able to adapt in real-time and low complexity a single pre-encoded content
to possibly a very large number of heterogeneous users with different needs
and interest in the content.

We have shown that this scheduling is based on a light rate allocation,
which relies on approximations based on pre-computed values. These values
are generated once during an off-line phase and store in an index file. We
have shown that these approximations affect the system performances in an
acceptable way, while significantly decreasing the computation complexity
and required memory for the off-line generation of the index file.
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In this thesis we have addressed the problematic of an efficient and flex-

ible remote browsing of video content. The proposed system offers fine-
grained scalability in terms of resolution, quality and spatial access as well
as temporal access to individual frames and enables users with very different
profiles, resources and interests to access efficiently the stored content.

In the present conclusion, we summarize the main contributions of this
work and present the perspectives and future directions for this research.

6.1 Contributions

A
s a first contribution, we have liberated the coding framework
from the strict closed-loop prediction required in conventional
hybrid video coding schemes. Intra-based and parity-based re-
plenishment solutions have been considered to increase robust-

ness to a mismatch between the references available at the encoder and
the decoder. On the one hand, intra content opens and virtually removes
the prediction-loop refreshing the content. On the other hand, parity bits
are designed to correct stochastic errors, and not to encode deterministic
prediction errors. Hence, the system is expected to support some desyn-
chronization between the encoder and decoder, which is known to be partic-
ularly helpful when the content is pre-encoded off-line, and the transmission
server has to adapt to fluctuating and not guaranteed network resources.

As a second contribution, we have proposed a rate-distortion optimal
strategy to select the most profitable data to transmit among multiple
replenishment options, thereby unifying open-loop (JPEG 2000 INTRA)
and relaxed closed-loop (parity bits) mechanisms. This rate allocation is
independent of the compression engine, which enables the server to adapt
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in real-time the content forwarded to heterogeneous - both in terms of
resources and interest - clients using a single pre-compressed version of the
sequence. A special attention has been payed to the complexity reduction
of this scheduling, enabling the system to be scaled for serving a very large
number of sequences and users. The result consists in a worthy compromise
between coding efficiency and server complexity.

As a third and significant outcome, we have integrated the novel tech-
nique of coding with side information into the conventional conditional
replenishment framework. To preserve scalability, the side information has
been exploited on bit-planes, in the wavelet transform domain. Hence, a
particular attention has been devoted to the efficient exploitation of tempo-
ral but also spatial correlation among wavelet subbands coefficients, while
defining the parity bits on subsets of wavelet bit-planes to preserve quality
scalability. A particular attention has been devoted to understanding how
an image source model can improve parity bits correcting capabilities. In
that context, we have observed that formalizing the spatial correlation be-
tween coefficients mainly helps in presence of localized errors. This finding
is important since it should drive the design of the motion-compensation
stage that should be envisioned for extending our system to arbitrary mov-
ing video content.

6.2 Perspectives

As explained above, a first direction for future work is the design of a
motion estimation module designed in a complementary way to the parity
coding spatial modeler. This work includes the research of new optimization
parameters specific to the parity replenishment.

In the present work, regular LDPC transformation matrices have been
used for the parity replenishment. A deep analysis of the particular virtual
channel present in this replenishment system combined with the research of
irregular matrices more adapted to this particular channel deserves further
investigation.

A paradigm shift consisting in reducing the scalability constraint, and
instead envisioning a low complexity encoder is also an interesting path.
This work is more in phase with the conventional Distributed Video Cod-
ing (DVC) research which is nowadays very active. This low complexity
encoder would only integrate the parity replenishment combined with a
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rate allocation using the distortion and virtual channel approximations pre-
sented in this work. Since complexity is shifted to the decoder in the DVC
paradigm, most of the temporal and spatial correlation should be exploited
after the reception. Should motion estimation be considered, it would as
be done at the decoder side.

Finally, since an interesting feature of the proposed framework is its
robustness, transmission in more hostile environments should be considered,
extending the work presented in Section 3.7.3. In this case, the physical
transmission channel (as opposed to the virtual channel referred to above)
conditions should be integrated during the rate allocation stage. Clearly,
parity bit replenishments will be favored as they will be able to correct both
virtual and physical channels. This should be achieved without significantly
increasing the system complexity or developing new modules. The research
presented in [7] which proposes such allocation process adapted for noisy
channels in a JPEG 2000 transmission context could provide a starting
point for this study.
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